摘要:
Ultrasonic imaging device noninvasively measures cardiac muscle stiffness or intracardiac pressure. The device includes: an ultrasonic probe (2) transmitting and receiving ultrasonic waves to and from the heart; a signal-processing section (15) processing reflected echo signals; a display section (14) displaying results of signal processing as an image; and an input section (10) setting a predetermined point on the image. The signal-processing section (15) includes: a shape-extracting section (152) perceiving information on the shape of the heart from the reflected echo signals; a natural-frequency detecting section (153) detecting natural frequency of the heart from the reflected echo signals; and a calculating section (154) calculating stiffness of the cardiac muscle or the intracardiac pressure, wherein the calculating section (154) accurately calculates the stiffness of the cardiac muscle from the natural frequency of the heart and calculates the intracardiac pressure from the stiffness of the cardiac muscle that has been calculated.
摘要:
Provided is an ultrasonic imaging device that noninvasively measures the stiffness of the cardiac muscle, which is the heart muscle, or intracardiac pressure, which is the blood pressure inside the heart. The ultrasonic imaging device includes: an ultrasonic probe (2) that transmits and receives ultrasonic waves to and from the heart, which is the target organ inside the body; a signal-processing section (15) that processes reflected echo signals received by the ultrasonic probe; a display section (14) that displays the results of signal processing as an image; and an input section (10) for setting a predetermined point on the image displayed on the display section. The signal-processing section (15) includes: a shape-extracting section (152) that perceives information on the shape of the heart from the reflected echo signals; a natural-frequency detecting section (153) that detects the natural frequency of the heart from the reflected echo signals; and a calculating section (154) that calculates the stiffness of the cardiac muscle or the intracardiac pressure, wherein the calculating section (154) accurately calculates the stiffness of the cardiac muscle from the natural frequency of the heart and calculates the intracardiac pressure from the stiffness of the cardiac muscle that has been calculated.
摘要:
Provided is a technology which quantitatively measures blood flow in the vicinity of circulatory organs. An ultrasound image capture device according to the present invention removes an image portion corresponding to an organ shape by taking the difference of a multi-frame ultrasound image, and thereafter computes a measured value of a blood flow velocity vector on the basis of a plurality of images at different timings (as per FIG. 3).
摘要:
Provided is a technology which quantitatively measures blood flow in the vicinity of circulatory organs. An ultrasound image capture device according to the present invention removes an image portion corresponding to an organ shape by taking the difference of a multi-frame ultrasound image, and thereafter computes a measured value of a blood flow velocity vector on the basis of a plurality of images at different timings (as per FIG. 3).
摘要:
In ultrasonic imaging, a physically consistent value of blood flow velocity is measured in the vicinity of body tissues. The ultrasound imaging apparatus comprises a shape extraction part for recognizing shape data of biological tissues by using echo signals reflected from a test subject irradiated with ultrasonic waves, a flow velocity distribution acquisition part for detecting blood flow velocities in the vicinity of the tissues from the echo signals, and a velocity determination part for extracting velocity information desired by a tester (objective velocity information). The velocity determination part sets a model of the objective blood flow, and determines a velocity of actually measured velocity distribution consistent with velocity distribution estimated from the model.
摘要:
The absolute pressure inside the heart with respect to heartbeat time phase is measured non-invasively or with minimal invasion. An ultrasonic diagnostic device comprising: a pressure sensor that detects artery pressure non-invasively; a reference pressure computation part that converts the artery pressure into absolute reference pressure with respect to a reference point; a spatial pressure difference calculation part that calculates a spatial pressure difference between the reference point and a location distinct from the reference point; and an absolute pressure computation part that calculates intracardiac absolute pressure using a shape image, the reference pressure, and the spatial pressure difference.
摘要:
In ultrasonic imaging, a physically consistent value of blood flow velocity is measured in the vicinity of body tissues. The ultrasound imaging apparatus comprises a shape extraction part for recognizing shape data of biological tissues by using echo signals reflected from a test subject irradiated with ultrasonic waves, a flow velocity distribution acquisition part for detecting blood flow velocities in the vicinity of the tissues from the echo signals, and a velocity determination part for extracting velocity information desired by a tester (objective velocity information). The velocity determination part sets a model of the objective blood flow, and determines a velocity of actually measured velocity distribution consistent with velocity distribution estimated from the model.
摘要:
A polycarbonate resin film of the present invention is formed from a polycarbonate resin which contains at least a constitutional unit derived from a dihydroxy compound having a bonded structure represented by the following structural formula (1) and satisfies the following expression (2) when subjected to a tensile test at a standard stretching temperature for the polycarbonate resin and at a pulling speed (strain rate) of 1,000%/min. [Chem. 1] CH2—O (1) (No hydrogen atom is bonded to the oxygen atom contained in the structural formula (1).) 0.9≦[(lower yield stress in tension)/(upper yield stress in tension)]≦1 (2).
摘要:
The object is to provide a polycarbonate copolymer having excellent mechanical strength, good heat resistance, a low refractive index, a large Abbe number, a low berefringence and excellent transparency and containing a plant-derived raw material. Disclosed is a polycarbonate copolymer which comprises a constituent unit derived from a dihydroxy compound represented by the general formula (1) and a constituent unit derived from an alicyclic dihydroxy compound and has an Abbe number of 50 or greater and “a 5% heating weight loss temperature” (a temperature at which the 5% weight loss under heating is observed) of 340° C. or higher. Also disclosed is a process for producing the polycarbonate copolymer by reacting a dihydroxy compound represented by the general formula (1) and an alicyclic dihydroxy compound with a carbonate diester in the presence of a polymerization catalyst.
摘要:
An alicyclic polyester which is suitable for use as an optical material, low in coloration, satisfactory in thermal stability and hydrolytic stability, and reduced in foreign-matter content; and a resin composition comprising the alicyclic polyester and a polycarbonate. The alicyclic polyester is produced from a dicarboxylic acid ingredient comprising an alicyclic dicarboxylic acid as a major component and a diol ingredient comprising an alicyclic diol as a major component with the aid of a polycondensation catalyst comprising a titanium compound and an alkaline earth metal compound. The alicyclic polyester has a titanium content in terms of metal atom amount of 1-25 wt. ppm, excluding 25 wt. ppm, a ratio of the weight of the alkaline earth metal (M) to the weight of the titanium in terms of metal atom amount ratio, (M/Ti), of 0.25-1.0, and an intrinsic viscosity of 0.4 dl/g or higher.