Abstract:
Provided is a technology which quantitatively measures blood flow in the vicinity of circulatory organs. An ultrasound image capture device according to the present invention removes an image portion corresponding to an organ shape by taking the difference of a multi-frame ultrasound image, and thereafter computes a measured value of a blood flow velocity vector on the basis of a plurality of images at different timings (as per FIG. 3).
Abstract:
An ultrasonic image processing method and device, and an ultrasonic image processing program which can correspond to analytical methods different depending on a region or the purpose of a diagnosis or treatment. The ultrasonic image processing method comprises an image data creation step which stores a detection result obtained by irradiating a subject with ultrasonic waves by an irradiating section and detecting an ultrasonic signal from the subject by a detecting section and creates at least two-frame image data different in detection timing on the basis of the stored detection result, a motion vector distribution image creation step which creates a motion vector distribution image on the basis of a predetermined motion vector analysis through the use of a plurality frames of the image data, and a conversion step which converts a vector distribution image to a scalar distribution image on the basis of a plurality of established regions of interest (ROI).
Abstract:
An ultrasonic diagnostic apparatus is provided for displaying a color map on which a difference in blood flow dynamics is reflected. Setting a test subject who is administered a contrast agent is assumed as an imaging target, and a probe transmits and receives ultrasonic waves to and from the target for contrast imaging. Image data is constructed based on signals received by the probe and a time-intensity curve is generated from intensity values of the image data. According to the time-intensity curve, a value of a predetermined parameter is calculated for producing a distribution image of blood flow dynamics. The distribution image (color map) of the blood flow dynamics is produced from the parameter value. The color map is a two-dimensional or a three-dimensional image being color-coded according to the parameter value. At least one of the followings may be used as the parameter; a contrast agent inflow start time, a balanced intensity arrival time, a contrast agent disappearance start time, a contrast agent duration, a preset threshold arrival time, an intensity increase rate, an intensity decrease rate, intensity of balanced state, and a total flow amount.
Abstract:
An ultrasonic imaging apparatus is provided, discriminates a noise area where echo signals are faint, by selecting a reference frame and a comparative frame from an image obtained by processing received signals and including a plurality of frames. A region of interest is set in the reference frame, a search area wider than the region of interest is set in the comparative frame, and multiple candidate regions being destination candidates of the region of interest are set within the search area. A degree of similarity between an image characteristic value in the region of interest and an image characteristic value in the candidate region is calculated, with respect to each of the candidate regions, to obtain a distribution of the degrees of similarity across the search area. Based on the similarity distribution, whether or not the region of interest corresponds to the noise area is determined.
Abstract:
Provided is an ultrasonic imaging apparatus including: a time-gain controller (TGC) that compensates an amplitude fading occurring in the process of propagation inside a living body; a scan converter (SC) that constructs image data; a TIC measurement unit that measures a TIC of each pixel; an evaluation index input unit that inputs an index for evaluating hemodynamics on the basis of a TIC; a mapping parameter estimation unit that estimates a mapping parameter comparable to an evaluation index; a TIC image construction unit that constructs a two-dimensional image on the basis of the mapping parameter; and a pixel detection unit that extracts a region corresponding to a color map from a TIC image, and utilizing a TIC measured with each pixel so as to measure a difference in hemodynamics.
Abstract:
Provided is a technology which quantitatively measures blood flow in the vicinity of circulatory organs. An ultrasound image capture device according to the present invention removes an image portion corresponding to an organ shape by taking the difference of a multi-frame ultrasound image, and thereafter computes a measured value of a blood flow velocity vector on the basis of a plurality of images at different timings (as per FIG. 3).
Abstract:
The invention provides a grease composition for huh unit bearing, containing (a) an aromatic diurea thickener, (b) a base oil, (c) a metal salt of oxidized wax, (d) diphenyl hydrogen phosphate, and (e) at least one rust preventive selected from the group consisting of sulfonate rust preventives and carboxylic acid rust preventives. The grease composition of the invention shows excellent anti-fretting properties at low temperature, and at the same time, exhibit excellent rust preventing properties.
Abstract:
An objective is to enable calculation of a distribution of a physical property such as a density inside a measurement object, even when the distribution of the physical property value is non-uniform, within a feasible period of time without causing image deterioration due to phenomena such as refraction and multiple-reflections caused by the non-uniformity. To this end, the physical property value that makes an evaluation quantity be an extremum is outputted, where the evaluation quantity is a liner sum or a product of exponential function of: an equation residual quantity that is a residual being a difference between an operator term and an external force term of an equation of motion; a non-uniformity detection equation residual quantity that is a residual of an equation of detecting the non-uniformity of the physical property value from a matching degree of solutions of the equation of motion under two types of boundary conditions; and a conditional equation residual quantity that is a residual of a constraint condition.
Abstract:
The present invention provides an ultrasonic diagnostic apparatus realizing improved visibility of a contour shape of signal components in an ultrasonic blood flow spectrum display image. The apparatus includes a gray-level correction unit for correcting intensity of an output result of a Doppler processing unit. The Doppler processing unit calculates a Doppler frequency shift in a reception signal output from a receiver and calculates blood flow velocity of a subject on the basis of the Doppler frequency shift. The gray-level correction unit has: a filtering unit for separating a signal and a noise from each other, which are included in a time-varying waveform of the blood flow velocity of the subject obtained by the Doppler processing unit on the basis of continuity on a space defined by the blood flow velocity and time; and a gray-level corrector for performing a gray level correction using, as a parameter, a boundary value between signal intensity and noise intensity obtained by the filtering unit.
Abstract:
The invention provides a grease composition for a hub unit bearing employing an angular contact ball bearing, containing (a) as a thickener a mixture of diurea compounds represented by formula (I): R1—NHCONH—R2—NHCONH—R1, formula (II): R1—NHCONH—R2—NHCONH—R3, and formula (III): R3—NHCONH—R2—NHCONH—R3 wherein R1 is cyclohexyl group, R2 is a divalent aromatic hydrocarbon group having 6 to 15 carbon atoms, R3 is a straight-chain or branched alkyl group having 12 to 20 carbon atoms, and (R1/(R1+R3))×100=85 to 95 mol %; (b) a base oil; (c) a molybdenum dialkyldithiocarbamate; and (d) a calcium sulfonate. The grease composition of the invention, when used in the hub unit bearing, shows minimum leakage, excellent anti-flaking properties and satisfactory bearing lubrication life.