摘要:
It is arranged such that displacement sensors (70) are installed at a position in or vicinity of elastic members (382), to generate outputs indicating a displacement of the floor contact end of a foot (22) relative to a second joint (18, 20), and a floor reaction force acting on the foot is calculated based on the outputs of the displacement sensors by using a model describing a relationship between the displacement and stress generated in the elastic members in response to the displacement, thereby enabling to achieve accurate calculation of the floor reaction force and more stable walking of a legged mobile robot (1). Further, a dual sensory system is constituted by combining different types of detectors, thereby enabling to enhance the detection accuracy. Furthermore, since it self-diagnoses whether abnormality or degradation occurs in the displacement sensors etc. and performs temperature compensation without using a temperature sensor, the detection accuracy can be further enhanced.
摘要:
It is arranged such that displacement sensors (70) are installed at a position in or vicinity of elastic members (382), to generate outputs indicating a displacement of the floor contact end of a foot (22) relative to a second joint (18, 20), and a floor reaction force acting on the foot is calculated based on the outputs of the displacement sensors by using a model describing a relationship between the displacement and stress generated in the elastic members in response to the displacement, thereby enabling to achieve accurate calculation of the floor reaction force and more stable walking of a legged mobile robot (1). Further, a dual sensory system is constituted by combining different types of detectors, thereby enabling to enhance the detection accuracy. Furthermore, since it self-diagnoses whether abnormality or degradation occurs in the displacement sensors etc. and performs temperature compensation without using a temperature sensor, the detection accuracy can be further enhanced.
摘要:
In a legged mobile robot (1), an elastic member (382) is installed at a position between a second joint (18, 20) connecting a distal end of a leg (2) and a foot (22) and a floor contact end of the foot, and a displacement sensor (70) is installed in a space defined by a top-to-bottom height of the elastic member. With this, it becomes possible to make the displacement sensor including its components such as the converter or the like compact enough to be housed in the elastic member at the limited space of the foot of the legged mobile robot. Further, it is arranged to self-diagnose abnormality of the displacement sensor by utilizing the redundancy of freedom, and also to detect the floor reaction force accurately such that the legged mobile robot can be controlled to walk more stably.
摘要:
In a biped walking robot having a body and two articulated legs each connected to the body through a hip joint and having a knee joint and an ankle joint, connected by a shank link, a knee pad is mounted on the shank link as a landing/shock absorbing means at a position adjacent to the knee joint which is brought into contact with the floor when coming into knee-first contact with the floor such that the knee joint is to be positioned at a location forward of the center of gravity of the robot in a direction of robot advance, while absorbing impact occurring from the contact with the floor. With this, the robot can be easily stood up from an attitude with its knee joint regions in contact with the floor. Moreover, when coming into knee-first contact with the floor, it can absorb the impact of the contact to protect the knee joint regions and the floor from damage.
摘要:
A landing shock absorbing device 18 provided in a foot mechanism 6 of a leg of a robot comprises an inflatable and compressible bag-like member 19 (a variable capacity element) on a bottom face side of the foot mechanism 6. The bag-like member 19 is constructed of an elastic material such as rubber. Air in the atmosphere can flow into and out of the bag-like member 19 by inflow/outflow means 20 provided with a solenoid valve 27 and the like. In a landing state of the foot mechanism 6 and in a state immediately after the foot mechanism shifts from the landing state to a lifting state, the solenoid valve 27 is closed to maintain the bag-like member 19 in a compressed state. Furthermore, during the bag-like member 19 in the inflating state during the lifting state of the foot mechanism 6, by controlling timing when the solenoid valve 27 is switched from a valve opening state to a valve closing state, a height of the bag-like member 19 in a compression direction is controlled to be a height suitable for a gait type of the robot. Thereby, posture stability of the robot can be secured easily while reducing a impact load in the landing motion of the leg of the legged mobile robot, and further, a lightweight configuration can be achieved.
摘要:
A landing shock absorbing device 18 disposed in a foot mechanism 6 of a leg of a robot, wherein an inflatable bag-like member 19 (a variable capacity element) is provided at a ground-contacting face side of the foot mechanism 6. The bag-like member 19 is constructed of an elastic material such as rubber and has a restoring force. An interior portion of the bag-like member 19 is communicated with the atmosphere side through a flow passage 20. During a landing motion of the leg, the bag-like member 19 makes contact with the ground to be compressed, and the air in the interior portion thereof flows out into the atmosphere through the flow passage 20, so that its outflow resistance is generated. Accordingly, a landing shock is reduced. In a lifting state of the leg, the restoring force of the bag-like member 19 allows the bag-like member 19 to be inflated while the air flows into the interior portion thereof. An impact load during the landing of the leg of the legged mobile robot may smoothly be reduced in a light-weight configuration.
摘要:
A landing shock absorbing device 18 provided in a foot mechanism 6 of a leg of a robot comprises an inflatable and compressible bag-like member 19 (a variable capacity element) on a bottom face side of the foot mechanism 6. The bag-like member 19 is constructed of an elastic material such as rubber. Air in the atmosphere can flow into and out of the bag-like member 19 by inflow/outflow means 20 provided with a solenoid valve 27 and the like. In a landing state of the foot mechanism 6 and in a state immediately after the foot mechanism shifts from the landing state to a lifting state, the solenoid valve 27 is closed to maintain the bag-like member 19 in a compressed state. Furthermore, during the bag-like member 19 in the inflating state during the lifting state of the foot mechanism 6, by controlling timing when the solenoid valve 27 is switched from a valve opening state to a valve closing state, a height of the bag-like member 19 in a compression direction is controlled to be a height suitable for a gait type of the robot. Thereby, posture stability of the robot can be secured easily while reducing a impact load in the landing motion of the leg of the legged mobile robot, and further, a lightweight configuration can be achieved.
摘要:
An assist device that applies an auxiliary driving force to a joint in parallel with a driving force of a joint actuator between a thigh portion and a crus portion, which are a pair of link members of a leg. The assist device generates the auxiliary driving force by use of spring device, such as a solid spring or an air spring. A member supporting a rod member connected to the spring device is provided with a device for transmitting a bending and stretching motion of the leg at the joint (a relative displacement motion between the thigh portion and the crus portion) to the spring device to generate an elastic force of the spring device, and for discontinuing the transmission of the bending and stretching motion to the spring device. This transmitting device is controlled in accordance with a gait of a robot. Thus, a burden on the joint actuator is reduced where necessary and favorable utilization efficiency of energy can be stably ensured.
摘要:
An arm structure for anthropomorphic robots minimizes the occurrence of a singularity state of a shoulder joint assembly while the arm of the anthropomorphic robot is normally working, for thereby allowing the arm to operate smoothly. The position and posture of first through third joints (11), (13), (15) of a shoulder joint assembly (5) and the position of an elbow joint assembly (6) with respect to the third joint (15) are established such that the elbow joint assembly (6) is located above a horizontal plane lying through the point of intersection of the axes (10), (12), (14) of the first through third joints (11), (13), (15), while the shoulder joint assembly (5) is operated into a singularity state wherein the first axis (10) of the first joint (11) and the third axis (14) of the third joint (15) are aligned with each other and the elbow joint assembly (6) is positioned laterally of a torso (1).
摘要:
A landing shock absorbing device 18 disposed in a foot mechanism 6 of a leg of a robot, wherein an inflatable bag-like member 19 (variable capacity element) is provided at a bottom face side of the foot mechanism 6. The bag-like member 19 is constructed of an elastic material such as rubber. The air in atmosphere may flow into and out of the bag-like member 19 by inflow/outflow means 20 equipped with a solenoid valve 27, and the like. In a lifting state of the foot mechanism 6, inflow of the air into the bag-like member 19 is controlled, thereby controlling the final height of the bag-like member 19 in an inflated state to the height in response to a gait type of the robot. While properly reducing an impact load during a landing motion of the leg of a legged mobile robot depending on the gait type of the robot, stability of a posture of the robot may easily be secured, resulting in allowing a configuration to be lighter in weight.