Abstract:
In a power slide device for vehicle seat which moves an upper rail in the forward/rearward direction by rotationally driving a screw rod, by providing a screw rod supporting rail with a pair of load transmitting members that are spaced from each other in the forward/rearward direction and providing the screw rod with a load receiving member which is in contact with the pair of load transmitting members, bucking is supported at a plurality of points when the buckling occurs in the screw rod due to an axial force acting on the screw rod, and this limits the direction of the buckling to reduce the amount of the buckling.
Abstract:
To detect the performance degradation of an optical communication transmission system after it becoming operational, thereby preventing the reliability of the system from lowering. In an optical communication transmission system, one of optical transmitter-receivers in a redundant-structured system is an active optical transmitter-receiver, and the other optical transmitter-receiver is a standby optical transmitter-receiver. The optical transmitter-receiver includes a loopback device through which the signal light of a transmitting section of the optical transmitter-receivers is inputted to a receiving section, and an operating-system switching scheduling device for regularly switching the operating system is provided. Further, there is also provided a performance check scheduling device which operates the loopback device of the standby-system optical transmitter-receiver at a prescribed timing determined in advance to start the performance check processing by the transmitting section and the receiving section of the optical transmitter-receiver.
Abstract:
An optical signal transmission system comprises a transmitter that phase-modulates two optical signals of a same frequency by asymmetrically chirping the two optical signals, combines the two optical signals that have been phase-modulated as polarization components according to polarization multiplexing, and transmits an optical signal that has been combined and obtained; and a receiver that receives said optical signal from said transmitter, compresses pulses of at least one of the polarization components of the optical signal, and splits the optical signal into two polarization components.
Abstract:
In a power slide device for vehicle seat which moves an upper rail in the forward/rearward direction by rotationally driving a screw rod, by providing a screw rod supporting rail with a pair of load transmitting members that are spaced from each other in the forward/rearward direction and providing the screw rod with a load receiving member which is in contact with the pair of load transmitting members, bucking is supported at a plurality of points when the buckling occurs in the screw rod due to an axial force acting on the screw rod, and this limits the direction of the buckling to reduce the amount of the buckling.
Abstract:
To detect the performance degradation of an optical communication transmission system after it becoming operational, thereby preventing the reliability of the system from lowering. In an optical communication transmission system, one of optical transmitter-receivers in a redundant-structured system is an active optical transmitter-receiver, and the other optical transmitter-receiver is a standby optical transmitter-receiver. The optical transmitter-receiver includes a loopback device through which the signal light of a transmitting section of the optical transmitter-receivers is inputted to a receiving section, and an operating-system switching scheduling device for regularly switching the operating system is provided. Further, there is also provided a performance check scheduling device which operates the loopback device of the standby-system optical transmitter-receiver at a prescribed timing determined in advance to start the performance check processing by the transmitting section and the receiving section of the optical transmitter-receiver.
Abstract:
A method for transmitting optical signals over multiple channels is provided, the method including: coding tributaries of data to be transmitted; firstly rearranging the coded tributaries, thereby scrambling the data among the coded tributaries and outputting rearranged coded tributaries; modulating optical carriers with data from one of the coded tributaries, creating modulated optical signals; transmitting the modulated optical signals; spatially multiplexing the modulated optical signals into spatially multiplexed channels; converting the spatially multiplexed optical signals into individual optical signals; receiving the individual optical signals through the multiple channels; demodulating the individual optical signals into electrical signals; decoding the electrical signals into decoded tributaries; and secondly rearranging the decoded of tributaries to recover the tributaries of data before step, wherein, a number of tributaries of data is equal to or more than two and is less than or equal to a number of the multiple channels.
Abstract:
The present invention relates to an anchor bolt and more specifically pertains to a post-installed anchor that is securely anchored to, for example, an existing concrete floor. The post-installed anchor has a sleeve fit on a bolt body and a fixation member arranged on an edge of the bolt body and screwed to a threaded end of the bolt body. The fixation member has an internal threaded end and an expansion end. The expansion end is divided into four expansion pieces by slits. The expansion pieces are arranged to face a head of the bolt body and are slightly widened toward the head of the bolt body. One end of the sleeve forms a tapered face. After insertion of the post-installed anchor into a pilot hole (installation hole) bored in the concrete floor, as the bolt body rotates, the fixation member screwed to the bolt body moves toward the sleeve. This movement causes the expansion end of the fixation member to ride on the tapered face of the sleeve and to be pressed open and extended outward. The expansion pieces of the expansion end are then buckled and bite into an inner circumferential face of the installation hole, so that the post-installed anchor is securely fixed to the installation hole.
Abstract:
In a coherent optical receiver, a light intensity value of signal light providing an optimum reception state is determined when ideal signal light free from waveform distortion is used as the signal light in a state where local-oscillator light is turned on. A first amplitude value of an analog electrical signal corresponding to the signal light is stored in a storage section, wherein the first amplitude value is obtained at a time when the ideal signal light of the light intensity value determined is used as the signal light in a state where the local-oscillator light is turned off. Light intensity of the signal light is determined so as to make a second amplitude value equal to the first amplitude value, wherein the second amplitude value is an amplitude value of the analog electrical signal which is obtained at a time when actual signal light is used as the signal light in a state where the local-oscillator light is turned off.
Abstract:
A receiver includes wavelength demultiplexer for demultiplexing a received WDM light into light signals at respective central frequencies thereof, delay interferometer for converting a light signal output from wavelength demultiplexer into an intensity signal, and light detector for converting an output signal from delay interferometer into an electric signal. The interval between interferential frequencies of delay interferometer is 2/(2n+1) times the interval between the central frequencies of the WDM light. Logic inverting circuit outputs the output signal from the light detector while non-inverting or inverting the logic level thereof depending on the received central frequency.
Abstract:
A dispersion compensation apparatus capable of compensating for dispersion while the state of polarization is maintained overall all channels between the input and output ends. Input signal light in alignment with the transmission polarization axis of a polarization beam splitter passes through the multiplexer and a wavelength dispersion-compensating device and is reflected by a Faraday rotator mirror so as to pass through the wavelength dispersion-compensating device again. Owing to the action of the Faraday rotator mirror, the signal light that returns to the wavelength dispersion-compensating device has a polarization that is orthogonal to the polarization that prevailed when the signal light first passed through the device. Thus the polarization beam splitter now operates in the reflective polarization mode with respect to the returning signal light. As a result, 100% of the signal light is output to a Polarization-maintaining optical fiber. Moreover, the polarization is fixed linear polarization.