摘要:
A system and method for identifying a monitoring point in an electrical and electronic system (EES) in a vehicle. The method includes defining a network model of the EES where potential monitoring point locations in the model are identified as targets, such as nodes. The method then computes a betweenness centrality metric for each target in the model as a summation of a ratio of a total number of shortest paths between each pair of targets and a number of shortest paths that pass through the target whose betweenness centrality metric is being determined. The method identifies which of the betweenness centrality metrics are greater than a threshold that defines a minimum acceptable metric and determines which of those targets meets a predetermined model coverage. The monitoring point is selected as the target that best satisfies the minimum metric and the desired coverage.
摘要:
A system and method for identifying a monitoring point in an electrical and electronic system (EES) in a vehicle. The method includes defining a network model of the EES where potential monitoring point locations in the model are identified as targets, such as nodes. The method then computes a betweenness centrality metric for each target in the model as a summation of a ratio of a number of shortest paths between each pair of targets in the model that pass through the target whose betweenness centrality metric is being determined to a total number of shortest paths between each pair of targets. The method identifies which of the betweenness centrality metrics are greater than a threshold that defines a minimum acceptable metric and determines which of those targets meets a predetermined model coverage. The monitoring point is selected as the target that best satisfies the minimum metric and the desired coverage.
摘要:
A method includes collecting state of health (SOH) data and usage data from a plurality of vehicles. A peer group is identified among the vehicles. A vehicle health prognosis is generated for each vehicle of the peer based on the collected SOH and usage data. The vehicles of the peer group are ranked based on the generated vehicle health prognosis and the rank is reported to an output device that is associated with each vehicle or with a user of each vehicle. If evaluation of the ranking indicates that the health prognosis of a vehicle of the peer group is improvable by modifying vehicle usage, an alert is issued to a user of that vehicle.
摘要:
A cooperative diagnostic and prognosis system for generating a prognosis of at least one component in a vehicle. An in-vehicle diagnostic unit determines a diagnostic signature of the component each time an occurrence of a condition is triggered and transmits the diagnostic signature to an off-board diagnostic unit. The off-vehicle diagnostic unit determines a SOH of the component and a rate-of-change in the SOH of the component. The off-vehicle diagnostic unit determines whether the rate-of-change in the SOH is greater than a threshold. The off-vehicle diagnostic unit requests additional information from the vehicle in response to the rate-of-change in the SOH being greater than the threshold. The additional information relating to operating parameter data associated with the component. The off-vehicle diagnostic unit receives the requested information and predicts a time-to-failure of the component.
摘要:
A cooperative diagnostic and prognosis system for generating a prognosis of at least one component in a vehicle. An in-vehicle diagnostic unit determines a diagnostic signature of the component each time an occurrence of a condition is triggered and transmits the diagnostic signature to an off-board diagnostic unit. The off-vehicle diagnostic unit determines a SOH of the component and a rate-of-change in the SOH of the component. The off-vehicle diagnostic unit determines whether the rate-of-change in the SOH is greater than a threshold. The off-vehicle diagnostic unit requests additional information from the vehicle in response to the rate-of-change in the SOH being greater than the threshold. The additional information relating to operating parameter data associated with the component. The off-vehicle diagnostic unit receives the requested information and predicts a time-to-failure of the component.
摘要:
A method for optimizing performance of a system includes determining, via a controller, a state of health (SOH) for each of a plurality of components of the system, and determining a state of function (SOF) of the system using the SOH of each component. The method includes estimating the remaining useful life (RUL) of the system using the system SOF, selecting a cost-optimal control strategy for the system using a costing model, and dynamically, i.e., in real time, executing the selected strategy to extend the estimated RUL. The method may include comparing the selected cost-optimal strategy to a calibrated performance threshold, and executing the selected strategy only when the selected strategy exceeds the threshold. A system includes first and second components and a controller. The controller dynamically executes the above method with respect to the components, which may be a traction motor and battery in one possible embodiment.
摘要:
A method for optimizing performance of a system includes determining, via a controller, a state of health (SOH) for each of a plurality of components of the system, and determining a state of function (SOF) of the system using the SOH of each component. The method includes estimating the remaining useful life (RUL) of the system using the system SOF, selecting a cost-optimal control strategy for the system using a costing model, and dynamically, i.e., in real time, executing the selected strategy to extend the estimated RUL. The method may include comparing the selected cost-optimal strategy to a calibrated performance threshold, and executing the selected strategy only when the selected strategy exceeds the threshold. A system includes first and second components and a controller. The controller dynamically executes the above method with respect to the components, which may be a traction motor and battery in one possible embodiment.
摘要:
A method includes collecting state of health (SOH) data and usage data from a plurality of vehicles. A peer group is identified among the vehicles. A vehicle health prognosis is generated for each vehicle of the peer based on the collected SOH and usage data. The vehicles of the peer group are ranked based on the generated vehicle health prognosis and the rank is reported to an output device that is associated with each vehicle or with a user of each vehicle. If evaluation of the ranking indicates that the health prognosis of a vehicle of the peer group is improvable by modifying vehicle usage, an alert is issued to a user of that vehicle.
摘要:
A method for detecting whether the stator in a vehicle alternator has a turn-to-turn short circuit. The method includes determining an output current or voltage signal of the alternator, where the output current or voltage signal includes a ripple current frequency as a result of an AC-to-DC conversion. The method determines the speed of the alternator and a current output of the alternator. The method then determines the ripple current frequency of the alternator from the alternator speed, and determines a winding frequency from the ripple current frequency. The method performs an FFT analysis on the voltage and current signal, determines an amplitude of the winding frequency and compares the amplitude of the winding frequency to a predetermined amplitude, where if the difference exceeds a predetermined threshold, a turn-to-turn short circuit is likely occurring.
摘要:
A method is provided for determining a state-of-charge of a battery for a vehicle. The vehicle is in a charging state when the engine is operating and a non-charging state when the engine is not operating. A first battery voltage is measured at a first predetermined time period after battery charging is discontinued in the non-charging state. A first temperature of the battery is measured that coincides with the first battery voltage. A second battery voltage is measured at a second predetermined time. The second predetermined time is greater than the first predetermined time. A second temperature of the battery is measured that coincides with the second battery voltage. An average temperature is calculated based on the first temperature measurement and the second temperature measurement. A fixed time constant is determined based on the average temperature. An open circuit voltage is estimated as a function of the first voltage measurement, the second voltage measurement, and the fixed time constant. A state-of-charge of the battery is determined based on the estimated open circuit voltage.