摘要:
The present invention is directed to a pattern-unbonded nonwoven fabric having continuous bonded areas defining a plurality of discrete unbonded areas, which is suitable for use as an improved loop fastening material for hook and loop fastening systems. The fibers or filaments within the discrete unbonded areas of the present invention are dimensionally stabilized by the continuous bonded areas that encircle or surround each unbonded area. The spaces between fibers or filaments within the unbonded areas remain sufficiently open or large to receive and engage hook elements of a complementary hook material. The hook material can be any of a wide variety of commercially available hook components which, as is known in the art, typically include a base material from which a plurality of hook elements project. The present invention further is directed to a process for making such a pattern-unbonded nonwoven fabric including the steps of providing a nonwoven fabric or web, providing opposedly positioned first and second calender rolls and defining a nip therebetween, with at least one of said rolls being heated and having a bonding pattern on its outermost surface comprising a continuous pattern of land areas defining a plurality of discrete openings, apertures or holes, and passing the nonwoven fabric or web within the nip formed by said rolls.
摘要:
The present invention provides continuously crimped propylene polymer nonwoven fabrics as well as processes for forming crimped multicomponent propylene polymer fibers by melt-attenuating extruded multicomponent fibers with heated or unheated air wherein the fibers spontaneously crimp without the need for additional heating and/or stretching steps.
摘要:
A method for stretching nonwoven sheet material in the cross-machine direction includes coursing a nonwoven sheet material through a deformable nip, the nip being formed between two rotating stretch surfaces having intermeshing peaks and troughs, the surfaces of the peaks and troughs being covered with a deformable material, and contemporaneously pressing the stretch surfaces together while rotating them, such that as the nonwoven material travels through the nip, the nip deforms from an initial flat formation into a convoluted formation.
摘要:
A personal care absorbent article made of a nonwoven material having a plurality of polymeric fibers having a fiber interior comprising at least one of a liquid fluid and a gaseous fluid. The nonwoven materials are produced by heating at least one polymer to a melting point, forming a molten polymer; extruding the molten polymer through a plurality of capillaries, injecting a liquid fluid and/or a gaseous fluid into the molten polymer prior to, during and/or after the extruding step, forming a plurality of fluid-filled polymeric fibers, wherein the liquid fluid and/or gaseous fluid is dispersed within the interior of the polymeric fibers, and depositing the fluid-filled polymeric fibers onto a web forming surface, forming a nonwoven material.
摘要:
There is provided a absorbent material for personal care products which is made from wettable fibers of at most 40 microns in diameter which are made into a web and where the web has controlled spaces in the side away from a wearer point unbonded bonding pattern. The web will accept a liquid insult of 50 ml with a runover/run-through percentage ratio of less than 1.5.
摘要:
An improved nonwoven web composite is formed by combining splittable bicomponent thermoplastic filaments with a component selected from other fibers and particles. The bicomponent filaments include distinct regions of first and second incompatible polymers extending the length of the filaments. After the bicomponent filaments are combined with the other fibers and/or particles, the bicomponent filaments are caused to split lengthwise along boundaries between the regions of different polymers, resulting in a web or matrix of finer filaments which entrap, ensnare and contain the other fibers and/or particles within the web or matrix. The nonwoven web composite is particularly useful for making absorbent articles, which require durability and optimum levels of absorbent fibers and/or particles.
摘要:
A method for producing super fine meltblown fibers increases the length of the meltblown jet thermal core to increase the dwell time of the extruded thermoplastic polymer within the jet thermal core. Through use of the method it is practical to use low viscosity resins and further to provide meltblown nonwovens with superior barrier properties to the passage of fluids and particularly gases. The method further provides a useful means for blooming internal additives to the surface of the fibers.
摘要:
High loft, low density nonwoven webs are produced by forming substantially continuous, spunbond, crimped, bicomponent fibers of A/B bilateral morphology in an unheated fiber draw unit. The fibers are then heated and cooled in the absence of impeding forces to achieve maximum crimp in the z-direction and produce a web of lofted material. The resultant material is particularly suitable for use as an insulator. Particulates may be added to the webs if desired.
摘要:
The present invention provides multicomponent fine fiber webs and multilayer laminates thereof having an average fiber diameter less than about 7 micrometers and comprising a first olefin polymer component and a second distinct polymer component such as an amorphous polyolefin or polyamide. Multilayer laminates incorporating the fine multicomponent fiber webs are also provided such as, for example, spunbond/meltblown/spunbond laminates or spunbond/meltblown/meltblown/spunbond laminates. The fine multicomponent fiber webs and laminates thereof provide laminates having excellent softness, peel strength and/or controlled permeability.
摘要:
A method is provided for producing fine denier multicomponent thermoplastic polymer filaments incorporating high melt-flow rate polymers. Multicomponent filaments are extruded such that the high melt-flow rate polymer component is substantially surrounded by one or more low melt-flow rate polymer components. The extruded multicomponent filament is then melt-attenuated with a significant drawing force to reduce the filament diameter and form continuous, fine denier filaments.