Abstract:
Coaxial connector assembly includes a connector module having a connector body and a plurality of coaxial contacts. The coaxial connector assembly also includes a mounting frame having a mating side and a mounting side that face in opposite directions. The mounting side faces in a mounting direction along the mating axis and is configured to interface with a support wall. The mounting frame defines a passage that extends through the mating and mounting sides. The passage includes a connector-receiving recess that opens to the mounting side and is defined by blocking surfaces. The blocking surfaces include a first blocking surface that faces in a lateral direction that is perpendicular to the mating axis and a second blocking surface that faces in the mounting direction. The first and second blocking surfaces are sized and shaped relative to the connector module to permit the connector module to float.
Abstract:
An electrical contact is provided for mating with a mating contact. The electrical contact includes a base extending a length along a central longitudinal axis, and an arm extending a length outward from the base along the central longitudinal of the base. The arm includes a first mating bump and a second mating bump. The first and second mating bumps have respective first and second mating surfaces. The arm is configured to engage the mating contact at each of the first and second mating surfaces to establish an electrical connection with the mating contact. The first mating surface of the first mating bump is spaced apart along the length of the arm from the second mating surface of the second mating bump.
Abstract:
A connector system includes an interface connector having a housing having a main body holding a contact array therein. The housing extends between a front end and a back end along a mating axis. The housing includes a cavity therein open to the front end and open to the back end. The cavity is situated proximate to a side of the housing. The cavity has a receiving channel open to the side of the housing. The receiving channel has mounting shoulders at least partially extending therein. The interface connector also includes a fastener having a retention surface. The fastener is configured to be side-loaded into the receiving channel through the side of the housing. The mounting shoulders engage the fastener within the cavity to limit transaxial movement of the fastener along the mating axis.
Abstract:
Coaxial connector assembly includes a connector module having a connector body and a plurality of coaxial contacts. The coaxial connector assembly also includes a mounting frame having a mating side and a mounting side that face in opposite directions. The mounting side faces in a mounting direction along the mating axis and is configured to interface with a support wall. The mounting frame defines a passage that extends through the mating and mounting sides. The passage includes a connector-receiving recess that opens to the mounting side and is defined by blocking surfaces. The blocking surfaces include a first blocking surface that faces in a lateral direction that is perpendicular to the mating axis and a second blocking surface that faces in the mounting direction. The first and second blocking surfaces are sized and shaped relative to the connector module to permit the connector module to float.
Abstract:
A connector system includes an interface connector having a housing having a main body holding a contact array therein. The housing extends between a front end and a back end along a mating axis. The housing includes a cavity therein open to the front end and open to the back end. The cavity is situated proximate to a side of the housing. The cavity has a receiving channel open to the side of the housing. The receiving channel has mounting shoulders at least partially extending therein. The interface connector also includes a fastener having a retention surface. The fastener is configured to be side-loaded into the receiving channel through the side of the housing. The mounting shoulders engage the fastener within the cavity to limit transaxial movement of the fastener along the mating axis.
Abstract:
An electrical connector is provided for terminating a plurality of electrical conductors. The electrical connector includes a terminal subassembly having terminals configured to be electrically connected to the electrical conductors. The terminal subassembly has an insulator holding the terminals. The terminal subassembly has a mating interface where mating surfaces of the terminals mate with a mating connector. The mating interface of the terminal subassembly is approximately flat. The electrical connector also includes a metal shell holding the terminal subassembly. The metal shell has the cross-sectional shape of an oval.
Abstract:
An electrical contact is provided for mating with a mating contact. The electrical contact includes a base extending a length along a central longitudinal axis, and an arm extending a length outward from the base along the central longitudinal of the base. The arm includes a first mating bump and a second mating bump. The first and second mating bumps have respective first and second mating surfaces. The arm is configured to engage the mating contact at each of the first and second mating surfaces to establish an electrical connection with the mating contact. The first mating surface of the first mating bump is spaced apart along the length of the arm from the second mating surface of the second mating bump.
Abstract:
A flexible circuit to wire transition member and method which transitions wires connected to a standard wire termination connector to a flexible circuit. The transition member includes a housing with a flexible circuit receiving recess provide proximate a first surface of the housing. A wire receiving recess is provided in the housing proximate a first surface of the housing. A contact extends between the flexible circuit receiving recess and the wire receiving recess, the contact provides an electrical connection between a flexible circuit received in the flexible circuit receiving recess and a wire received in the wire receiving recess.
Abstract:
An electrical connector is provided for terminating a plurality of electrical conductors. The electrical connector includes a terminal subassembly having terminals configured to be electrically connected to the electrical conductors. The terminal subassembly has an insulator holding the terminals. The terminal subassembly has a mating interface where mating surfaces of the terminals mate with a mating connector. The mating interface of the terminal subassembly is approximately flat. The electrical connector also includes a metal shell holding the terminal subassembly. The metal shell has the cross-sectional shape of an oval.
Abstract:
An electrical connector system includes a backplane connector having a housing, signal contacts held by the housing and shield plates held by the housing. The housing includes a front and a rear. The housing includes signal channels extending along mating axes thereof between the front and the rear. The signal channels receive corresponding signal contacts. The housing includes slots that receive the shield plates. The signal contacts extend along the mating axes and are arranged in pairs carrying differential signals. The shield plates are electrically conductive and extend generally parallel to the mating axes between corresponding pairs of signal contacts to entirely peripherally surround the pairs of signal contacts to provide electrical shielding for the pairs of signal contacts.