摘要:
A method of forming an electrode having an electrochemical catalyst layer is disclosed, which comprises providing a substrate with a conductive layer formed on the surface of a substrate, conditioning the surface of the substrate, immersing the substrate in a solution containing polymer-capped noble metal nanoclusters dispersed therein to form a polymer-protected electrochemical catalyst layer on the conditioned surface of the substrate, and thermally treating the polymer-protected electrochemical catalyst layer at a temperature approximately below 300° C.
摘要:
A method of forming an electrode having an electrochemical catalyst layer is disclosed. The method includes etching a surface of a substrate, followed by immersing the substrate in a solution containing surfactants to form a conditioner layer on the surface of the substrate, and immersing the substrate in a solution containing polymer-capped noble metal nanoclusters dispersed therein to form a polymer-protected electrochemical catalyst layer on the conditioner layer.
摘要:
A method of forming an electrode including an electrochemical catalyst layer is disclosed, which comprises forming a graphitized porous conductive fabric layer, optionally conditioning the graphitized porous conductive fabric layer, and dipping the graphitized porous conductive fabric layer into a solution containing a plurality of polymer-capped noble metal nanoclusters dispersed therein. The polymer-capped noble metal nanoclusters as an electrochemical catalyst layer are adsorbed onto the graphitized porous conductive fabric layer. An electrochemical device with the electrode made thereby is also contemplated.
摘要:
A method of forming an electrode having an electrochemical catalyst layer is disclosed, which comprises providing a substrate with a conductive layer formed on the surface of a substrate, conditioning the surface of the substrate, immersing the substrate in a solution containing polymer-capped noble metal nanoclusters dispersed therein to form a polymer-protected electrochemical catalyst layer on the conditioned surface of the substrate, and thermally treating the polymer-protected electrochemical catalyst layer at a temperature approximately below 300° C.