Abstract:
A turbine exhaust assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a turbine exhaust case comprised of CMC material and attachable to a turbine case, a tail cone comprised of CMC material that has a leading edge and a trailing edge, and an exhaust mixer comprised of CMC material and coupled to the turbine exhaust case. The exhaust mixer has a plurality of lobes arranged about the tail cone to define an exhaust flow path. A plurality of struts extend from the tail cone to support the exhaust mixer at a location aft of the leading edge of the tail cone. A method of assembling a propulsion system is also disclosed.
Abstract:
An intercooled cooling system for a gas turbine engine includes a heat exchanger in fluid communication with a cooling airflow source directed through the heat exchanger and an auxiliary compressor fluidly coupled to the heat exchanger via a discharge duct to compress the cooling airflow exiting the heat exchanger. A compressor discharge pathway directs a first portion of the cooling airflow from the auxiliary compressor to a first cooling location of the gas turbine engine, and a bypass pathway is fluidly coupled to the discharge duct between the heat exchanger and the auxiliary compressor to direct a second portion of the cooling airflow to a second cooling location of the gas turbine without passing through the auxiliary compressor.
Abstract:
A control system for a gas turbine engine comprises a case structure, a clearance control ring mounted for movement relative to the case structure, an outer air seal mounted to the clearance control ring and facing a first engine component, and a control and valve assembly that receives flow from a flow input source. The control and valve assembly is configured to direct flow into a first cavity positioned radially between the case structure and the outer air seal, and wherein the control and valve assembly is configured to direct flow into a second cavity positioned downstream of the first cavity to interact with a second engine component. A method of controlling flow between a compressor section and turbine section is also disclosed.
Abstract:
An exemplary gas turbine engine assembly includes a transmission coupling a starter generator assembly to a first set of gears. The transmission is transitionable between a first mode where the starter generator assembly is driven at a first speed relative to the second towershaft, and a second mode where the starter generator assembly is driven at a different, second speed relative to the second towershaft.
Abstract:
A method for mounting a gas turbine engine having a compressor section, a combustor section, a turbine section, a pylon and a rear mount bracket, includes positioning the mounting bracket between the gas turbine engine and the pylon. The mounting bracket is connected to the turbine case reacting a least a vertical load, a side load, a thrust load, and a torque load from the gas turbine engine through the mounting bracket. The mounting bracket is attached to the pylon reacting the same loads from the gas turbine engine.
Abstract:
A gas turbine engine may include an axial high pressure compressor having an air flow pathway positioned between the inner and outer rim of the rotor section. The air flow pathway includes an inlet port, a transition segment, an axial segment, and an outlet port. The pathway may be a tube having an ovoid cross sectional shape and is substantially co-planar to the outer surface of the outer rim. The pathway may traverse the rotor section from the first rotor segment to the rear hub.
Abstract:
A gas turbine engine may include a rotor overspeed protection (ROP) assembly. The ROP assembly may include an annular blade outer air seal (BOAS) assembly including a ROP segment. The ROP assembly may include a stator vane coupled with the BOAS assembly/. The stator vane may include a stator flange disposed about a forward edge portion of the stator vane. The ROP segment may include a ROP flange extending in an axially aft direction from a main body of the ROP segment toward the stator vane, wherein the ROP flange is disposed radially inward of the stator flange.
Abstract:
A non-metallic tailcone in a tip turbine engine includes a tapered wall structure disposed about a central axis. The non-metallic tailcone is fastened to a structural frame in the aft portion of the tip turbine engine. The tip turbine engine produces a first temperature gas stream from a first output source and a second temperature gas stream from a second output source. The second temperature gas stream is a lower temperature than the first temperature gas stream. The second temperature gas stream is discharged at an inner diameter of the tip turbine engine over an outer surface of the tailcone. Discharging the cooler second temperature gas stream at the inner diameter allows a non-metallic to be used to form the tailcone.
Abstract:
A gas turbine engine assembly includes a turbine section having first and second turbines mounted for rotation about a common rotational axis within an engine static structure, first and second turbine shafts coaxial with one another and to which the first and second turbines are respectively operatively mounted, first and second towershafts respectively coupled to the first and second turbine shafts, an accessory drive gearbox mounted to the engine static structure, and a transmission transitionable between a first mode where an electric machine is driven at a first speed relative to the first towershaft, and a second mode where the electric machine is driven at a different, second speed relative to the first towershaft.
Abstract:
An air bleed system for a gas turbine engine includes a compressor case, fan panel, compartment, bleed port, bleed valve, and duct. The compressor case extends circumferentially around a core of the gas turbine engine. The fan panel is disposed radially outward from the compressor case. The compartment is disposed between the compressor case and fan panel. The bleed port extends from the compressor case into the compartment. The bleed valve is disposed on an outward end of the bleed port and is configured to selectively occupy an open or a closed position so as to regulate flow of a fluid. The duct extends between the bleed valve and the fan panel and is fluidly connected to the bleed port and to the opening of the fan panel. The duct is configured to transport the fluid from the engine core to the fan panel and through the opening.