Abstract:
A process is presented for the online cleaning of the tubes in a heat exchanger. The process includes adding an abrasive material to the gas stream to be cooled, and abrading any particles or catalyst fines that have adhered to the tube walls. The abrasive material is to be a water soluble solid to allow for the removal of the abrasive material in a quench tower.
Abstract:
A process is presented for removing the fouling problems associated with the product recovery in a methanol to olefins conversion process. The process includes passing the quenched MTO process stream to a product separator, wherein an intermediate stream is generated and includes water and heavier hydrocarbons. The intermediate stream is processed to remove the buildup of heavier hydrocarbons.
Abstract:
A process and device for the flow of catalyst in a reactor is presented. The device includes a series of grids within a reactor vessel, where each grid includes small openings for the passage of gas and some catalyst particles, and larger openings for the more continuous passage of catalyst. The grids span horizontally across the vessel, and are spaced vertically apart to provide for the flow of catalyst down through the reactor.
Abstract:
A process and device for the flow of catalyst in a reactor is presented. The device includes a series of grids within a reactor vessel, where each grid includes small openings for the passage of gas and some catalyst particles, and larger openings for the more continuous passage of catalyst. The grids span horizontally across the vessel, and are spaced vertically apart to provide for the flow of catalyst down through the reactor.
Abstract:
A process is presented for increasing the conversion efficiency of oxygenates to olefins. The conversion of oxygenates recycles unconverted oxygenates and oxygenate by-products to a second reactor unit. The present of oxygenate by-products decreases the efficiency of the methanol to olefins reaction, and passing recycled oxygenates to a second reactor unit maintains the methanol to olefins conversion efficiency while converting the by-products in a secondary zone.
Abstract:
The present invention relates to an apparatus for gas-liquid distribution. More specifically, the present invention relates to a gas-liquid distribution device that may be used in an ionic liquid co-current gas and liquid up-flow reactor designed to distribute gas uniformly across the reactor cross section through restriction orifices on distributors located across the distribution tray.
Abstract:
A process and device for the flow of catalyst in a reactor is presented. The device includes a series of grids within a reactor vessel, where each grid includes small openings for the passage of gas and some catalyst particles, and larger openings for the more continuous passage of catalyst. The grids span horizontally across the vessel, and are spaced vertically apart to provide for the flow of catalyst down through the reactor
Abstract:
The present invention relates to an apparatus for gas-liquid distribution. More specifically, the present invention relates to a gas-liquid distribution device that may be used in an ionic liquid co-current gas and liquid up-flow reactor designed to distribute gas uniformly across the reactor cross section through restriction orifices on distributors located across the distribution tray.
Abstract:
A process is presented for removing the fouling problems associated with the product recovery in a methanol to olefins conversion process. The process includes passing the quenched MTO process stream to a product separator, wherein an intermediate stream is generated and includes water and heavier hydrocarbons. The intermediate stream is processed to remove the buildup of heavier hydrocarbons.
Abstract:
A process is presented for increasing the conversion efficiency of oxygenates to olefins. The conversion of oxygenates recycles unconverted oxygenates and oxygenate by-products to a second reactor unit. The present of oxygenate by-products decreases the efficiency of the methanol to olefins reaction, and passing recycled oxygenates to a second reactor unit maintains the methanol to olefins conversion efficiency while converting the by-products in a secondary zone.