摘要:
A new catalyst hydroisomerizes C18 paraffins from fatty acids to a high degree to produce a composition with acceptable freeze point which retains 18 carbon atoms in the hydrocarbon molecule for jet fuel. We have discovered a fuel composition comprising at least 14 wt % hydrocarbon molecules having at least 18 carbon atoms and a freeze point not higher than −40° C. The composition also may exhibit a exhibiting a final boiling point of no more than 300° C. The hydroisomerization process can be once through or a portion of the product diesel stream may be selectively hydrocracked or recycled to hydroisomerization to obtain a fuel composition that meets jet fuel specifications.
摘要:
Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
摘要:
Process and apparatus for producing a naphtha stream is provided. The process comprises providing a kerosene stream to a hydrocracking reactor. The kerosene stream is hydrocracked in the presence of a hydrogen stream and a hydrocracking catalyst in the hydrocracking reactor at hydrocracking conditions comprising a hydrocracking pressure, a hydrocracking temperature, and a liquid hourly space velocity at a net conversion of at least about 90%, to provide a hydrocracked effluent stream comprising liquefied petroleum gas, heavy naphtha fraction and light naphtha fraction. One or more of the hydrocracking conditions are adjusted to maintain a ratio of the light naphtha fraction to the heavy naphtha fraction of at least about 2 by weight, suitably at least about 2.2 and preferably at least about 2.5 in the hydrocracked effluent stream while maintaining the net conversion of at least about 90%.
摘要:
A process is presented for the production of light olefins. The process utilizes a SAPO-18 catalyst and is operated at an elevated pressure. The process generates higher concentrations of heavier olefins which can then be processed to generate light olefins. The processing of the heavier olefins can include metathesis reactions and olefin cracking processes.
摘要:
A linear alkyl benzene product and production of linear alkylbenzene from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.
摘要:
Methods and apparatuses for preparing normal paraffins and hydrocarbon product streams are provided herein. A method of preparing normal paraffins includes providing an unsaturated feed that includes an unsaturated compound that has at least one alkenyl group. The unsaturated feed is epoxidized to convert the at least one alkenyl group in the unsaturated compound to an epoxide functional group, thereby converting the unsaturated compound to an epoxide compound that has at least one epoxide functional group. The at least one epoxide functional group in the epoxide compound is converted to at least one secondary hydroxyl functional group, thereby converting the epoxide compound to a hydroxyl-functional compound that has at least one hydroxyl functional group. The hydroxyl-functional compound is deoxygenated to form normal paraffins.
摘要:
Embodiments of methods for production of linear alkylbenzene and optionally biofuel from natural oil are provided. Natural oils are deoxygenated to form a stream comprising paraffins. A first portion of the paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product. Optionally, a second portion of the paraffins may be processed to form biofuel.
摘要:
A method for producing a linear paraffin includes providing a natural oil in a feed stream, deoxygenating the natural oil to form a stream comprising paraffins, purifying the stream comprising paraffins to form a purified stream comprising paraffins, and separating a first fraction of paraffin product from the purified stream comprising paraffins. A method for producing a linear olefin includes providing a natural oil in a feed stream, deoxygenating the natural oil to form a stream comprising paraffins, dehydrogenating the stream comprising paraffins to form a stream comprising olefins, purifying the stream comprising olefins to form a purified stream comprising olefins, and separating a first fraction of olefin product from the purified stream comprising olefins.
摘要:
Hydrodeoxygenating a biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms at a moderate hydrodeoxygenation ratio that is less than the ratio of hydrodeoxygenation utilized for traditional biorenewable feeds such as vegetable oil or even mineral feedstocks, normal paraffins in the range desired by the detergents industry can be produced. Either hydroisomerization or an iso-normal separation can be performed to provide green fuel streams. Two reactors are proposed, one for hydrodeoxygenation of the biorenewable feed that is concentrated in free fatty acids with 10-13 carbon atoms and the other for a traditional biorenewable feed or even a mineral feed operated at a higher deoxygenation ratio.
摘要:
A process is presented for the production of light olefins. The process utilizes a SAPO-18 catalyst and is operated at an elevated pressure. The process generates higher concentrations of heavier olefins which can then be processed to generate light olefins. The processing of the heavier olefins can include metathesis reactions and olefin cracking processes.