摘要:
This invention provides a new high selectivity stable facilitated transport membrane comprising a polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane, a hydrophilic polymer inside the pores on the skin layer surface of the PES/PEO-Si blend support membrane; a hydrophilic polymer coated on the skin layer surface of the PES/PEO-Si blend support membrane, and metal salts incorporated in the hydrophilic polymer coating layer and the skin layer surface pores of the PES/PEO-Si blend support membrane, and methods of making such membranes. This invention also provides a method of using the high selectivity stable facilitated transport membrane comprising PES/PEO-Si blend support membrane for olefin/paraffin separations such as propylene/propane and ethylene/ethane separations.
摘要:
This invention provides a new high flux reverse osmosis (RO) membrane comprising a nanoporous polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane (PES/PEO-Si) comprising a polyethylene oxide-polysilsesquioxane (PEO-Si) polymer and a polyethersulfone (PES) polymer, a hydrophilic polymer inside the pores on the skin layer surface of the polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a thin, nanometer layer of cross-linked polyamide on the skin layer surface of said polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a method of making such a membrane. This invention also provides a method of using the new high flux reverse osmosis membrane comprising nanoporous PES/PEO-Si blend support membrane for water purification.
摘要:
The present invention provides high permeance copolyimide membranes and methods for making and using these membranes for gas separations such as for hydrogen purification and for acid gas removal from natural gas. The random copolyimide polymers used to make the copolyimide membrane may be UV crosslinked to improve selectivity in separating mixtures of gases or in purifying liquids. The membranes may be fabricated into any known membrane configuration such as a flat sheet or a hollow fiber.
摘要:
The present invention provides a high selectivity epoxysilicone-cross-linked polyimide membrane comprising a polyimide polymer with hydroxyl functional groups cross-linked with epoxy functional groups on epoxysilicone polymer. The present invention also provides a process for separating at least one gas from a mixture of gases using the high selectivity epoxysilicone-cross-linked polyimide membrane. The process comprises providing the high selectivity epoxysilicone-cross-linked polyimide membrane which is permeable to the at least one gas; contacting the mixture on one side of the membrane to cause the at least one gas to permeate the membrane; and removing from the opposite side of the membrane a permeate gas composition comprising a portion of the at least one gas which permeated the high selectivity epoxysilicone-cross-linked polyimide membrane.
摘要:
The present invention provides a high selectivity epoxysilicone-cross-linked polyimide membrane comprising a polyimide polymer with hydroxyl functional groups cross-linked with epoxy functional groups on epoxysilicone polymer. The present invention also provides a process for separating at least one gas from a mixture of gases using the high selectivity epoxysilicone-cross-linked polyimide membrane. The process comprises providing the high selectivity epoxysilicone-cross-linked polyimide membrane which is permeable to the at least one gas; contacting the mixture on one side of the membrane to cause the at least one gas to permeate the membrane; and removing from the opposite side of the membrane a permeate gas composition comprising a portion of the at least one gas which permeated the high selectivity epoxysilicone-cross-linked polyimide membrane.
摘要:
A copolyimide polymer membrane is provided for separation of hydrocarbons including separation of olefins from paraffins and isoparaffins from other paraffins. The copolyimide polymer membranes include a poly(3,3′-diaminobenzophenone-3,3′,5,5′-tetramethyl-4,4′-methylene dianiline-pyromellitic dianhydride) (abbreviated as poly(DAB-TMMDA-PMDA)). The copolyimide membranes prepared from poly(DAB-TMMDA-PMDA) with varying molar ratios of DAB to TMMDA (abbreviated as PI-DAB-T) showed excellent separation properties for propylene/propane separation.
摘要:
Cross-linked rubbery polyurethane-ether polymeric membranes are made from cross-linked rubbery polyurethane-ether polymers that are synthesized from a diisocyanate-terminated polyether and a tetrol with four hydroxyl functional groups. The hydroxyl groups on the tetrol react with the isocyanate groups on the diisocyanate-terminated polyether to form urethane bonds. The cross-linked rubbery polyurethane-ether polymeric membrane selectively permeate condensable vapors such as C3 to C35 hydrocarbons, aromatics, water vapor, carbon dioxide, and hydrogen sulfide and rejects methane and ethane. The cross-linked rubbery polyurethane-ether polymeric membrane have high permeance for condensable vapors, high selectivity for condensable vapors over methane and ethane, and high resistance to liquid chemicals.
摘要:
The present invention discloses new types of poly(amidoamine) (PAMAM) dendrimer-cross-linked polyimide membranes and methods for making and using these membranes. The membranes are prepared by cross-linking of asymmetric aromatic polyimide membranes using a PAMAM dendrimer as the cross-linking agent. The PAMAM-cross-linked polyimide membranes showed significantly improved selectivities for CO2/CH4 compared to a comparable uncrosslinked polyimide membrane. For example, PAMAM 0.0 dendrimer-cross-linked asymmetric flat sheet poly(3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride-3,3′,5,5′-tetramethyl-4,4′-methylene dianiline) (DSDA-TMMDA) polyimide membrane showed CO2 permeance of 135.2 A.U. and CO2/CH4 selectivity of 20.3. However, the un-cross-linked DSDA-TMMDA asymmetric flat sheet membrane showed much lower CO2/CH4 selectivity (16.5) and higher CO2 permeance (230.8 GPU).
摘要:
This invention provides a new high flux reverse osmosis (RO) membrane comprising a nanoporous polyethersulfone (PES)/polyethylene oxide-polysilsesquioxane (PEO-Si) blend support membrane (PES/PEO-Si) comprising a polyethylene oxide-polysilsesquioxane (PEO-Si) polymer and a polyethersulfone (PES) polymer, a hydrophilic polymer inside the pores on the skin layer surface of the polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a thin, nanometer layer of cross-linked polyamide on the skin layer surface of said polyethersulfone/polyethylene oxide-polysilsesquioxane blend support membrane, and a method of making such a membrane. This invention also provides a method of using the new high flux reverse osmosis membrane comprising nanoporous PES/PEO-Si blend support membrane for water purification.
摘要:
The present invention provided a high temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications such as for natural gas upgrading and hydrogen purifications. This invention also relates to a hollow fiber membrane module comprising a bundle of multiple high performance hollow fiber membranes and a tube sheet formed by a high temperature resistant cured epoxy resin that is used to fix and bound said bundle of multiple high performance hollow fiber membranes. The invention also provides a process for separating at least one gas from a mixture of gases using the hollow fiber membrane modules comprising a bundle of multiple high performance hollow fiber membranes and a tube sheet formed by a high temperature resistant cured epoxy resin that is used to fix and bound said bundle of multiple high performance hollow fiber membranes.