Abstract:
A pump assembly may include a rotor having a rotor shaft portion; a stator having a bore portion defining a bore for receiving the rotor shaft portion; and a circumferential protrusion extending radially into the bore between the bore portion and the rotor shaft portion, wherein at least one of the protrusion and a corresponding surface of the rotor shaft portion or the bore portion is configured to be abraded by the other upon experiencing contact therewith. In this way, the gap between the bore portion and the rotor shaft portion may be at least partially filled by the circumferential protrusion in order to provide a seal. The protrusion and one of the bore portion and the rotor shaft portion may be formed from different hardness materials.
Abstract:
A wind turbine has a drive train that comprises a rotor shaft and a planetary gear train having a first gear stage, the rotor shaft being connected to the planet carrier of the first gear stage in a fixed and backlash-free manner. The rotor shaft is supported, on the side that faces away from the first gear stage, by a toroidal roller bearing, on a first carrying structure. The planet carrier that is connected to the rotor shaft in a fixed and backlash-free manner is supported by a moment bearing, as a fixed bearing. The outer ring of the moment bearing is connected to a housing. The combination of the outer ring of the moment bearing and the housing is connected to a second carrying structure via at least three elastic suspension elements arranged in an annular manner around the rotor axis.
Abstract:
A vibration isolator includes a housing having a top surface, an opposing bottom surface, and a hollow interior and an open-ended sleeve having a hollow interior and an extending flange, the extending flange having a top surface and a bottom surface. A resilient core, having a hollow interior, is positioned between and fixedly coupled to the bottom surface of the housing and the top surface of the flange of the sleeve. The resilient core is disposed within a portion of the hollow interior of the open-ended sleeve. A first bushing is disposed within the interior of the sleeve. The first bushing has a flange including a bottom surface that overlays a top surface of the resilient core. A second bushing is disposed within the first bushing.
Abstract:
A turbocharger turbine wastegate assembly includes a turbine housing that includes a wastegate seat and a bore; a bushing with a stepped bore that includes an axial face; a wastegate that includes a shaft, a plug and an arm, where the shaft includes an end portion, a first axial face, a journal portion, a second axial face and a shoulder portion, where the first axial face is defined at least in part by an end portion diameter and a journal portion diameter, and where the second axial face is defined at least in part by the journal portion diameter and a shoulder portion diameter; a mesh spacer disposed radially about an axial length of the end portion of the shaft between the axial face of the stepped bore of the bushing and the first axial face of the shaft; and a control arm connected to the end portion of the shaft where an axial length of the bushing is disposed between the mesh spacer and the control arm.
Abstract:
Disclosed is a rail system for welding tables, including a base rail which is designed to be secured on or in a floor and has multiple openings corresponding to the openings of the welding tables; a connecting frame of a rail system for welding tables, said connecting frame being provided with rollers which are designed to interact with a circular rail; and a caster of a rail system for welding tables, said caster comprising a main part, rollers, and a tilting protection device. The is configured in that a circular rail is secured in a recess of the base rail. The connecting frame is configured in that a recess is provided in each base plate of the connecting frame, a rotating assembly roller being securable in the recess in different rotational positions. The caster is configured in that the rollers are designed to interact with a circular rail and the tilting protection device is designed to interact with a tilting protection recess and a tilting protection edge of a rail.
Abstract:
Provided is a partially-cylindrical sliding member including a sliding layer including fibrous particles having an average particle size of 5-25 μm dispersed in a synthetic resin at a volume ratio of 10-35% of the sliding layer. The particles having a major axis length ≤20 μm are included at a volume ratio of ≥10% to total particles. A sliding surface side area is defined from the sliding surface and has a thickness of 25% of a sliding layer thickness T, where the fibrous particles having a major axis length of ≥20 μm have a dispersion index of 1.1-6. An interface side area is defined from the interface and has a thickness of 25% of T, where the dispersion index is 1.1-6. An intermediate area is defined between the both areas, where the dispersion index is 0.1 to less than 1.
Abstract:
A hydrostatic bearing assembly for a shaft is disclosed, which consists of a base ring, two side rings enclosed up the base ring at both sides, and a plurality of hydrostatic blocks fixed respectively on surfaces of the base ring and of the side rings corresponded to the shaft, as result to hold the shaft to resist against loadings from the axial direction and/or the radial direction and provide lubrication through oil passages inside. These hydrostatic blocks are locked with screws or bolts on the base ring and on the side rings in order to be replaced individually on site.
Abstract:
Embodiments of the invention are directed to bearing assemblies configured to effectively provide heat distribution from and/or heat dissipation for bearing element, bearing apparatuses including such bearing assemblies, and methods of operating such bearing assemblies and apparatuses. In an embodiment, a bearing assembly includes a plurality of superhard bearing elements distributed about an axis. Each superhard bearing element of the plurality of superhard bearing elements has a superhard material including a superhard surface. Additionally, a support ring structure that includes a support ring that supports the plurality of superhard bearing elements and a thermally-conductive structure in thermal communication with the superhard table of each of the plurality of superhard bearing elements. The thermally-conductive structure has a higher thermal conductivity than the support ring of the support ring structure.
Abstract:
The invention relates to a method for lubricating and cooling a bearing that is subject to high loads and to a device for carrying out said method. The invention is characterized by dissolving a lubricant in a supercritical gas that is cooled down to a low temperature and feeding the gas/lubricant mixture to the baring. The gas/lubricant mixture is relaxed in the bearing area, thereby releasing the lubricant and lubricating the bearing. The now subcritical gas that is cooled down to a low temperature is used for cooling and is discharged to the exterior. The gas used is carbon dioxide (CO2) and the lubricant is a hydrocarbon-based lubricant.
Abstract:
The disclosed embodiments include self-lubricating oil feed systems that may include an integral bearing. The oil feed systems may include gear pumps suitable to minimize the axial profile of the oil feed systems. Additionally, the oil feed systems may be directly coupled to turbomachinery having a gear, and provide for mechanical support and lubrication of certain components of the turbomachinery. In certain embodiments, the oil feed systems enables the transfer of a lubrication fluid to the bearing during operations of the turbomachinery.