Abstract:
Systems and methods are presented that offer significant improvements in the performance of time division duplex (TDD) systems by utilizing an adaptive synchronous protocol. Conventional TDD systems are limited because data is transmitted during discreet and limited intervals of time, and because TDD transceivers may not simultaneously transmit and receive for reasons of insufficiently separated frequencies and limited receiver selectivity. Typically, TDD systems have significant latency due to the time to change from transmission to reception and the propagation delay time. By synchronizing the master nodes and the one or more remotes and by scheduling the traffic loads between these nodes, remote nodes may begin transmitting before the master node is finished with its transmission, and vice versa. This method reduces latency and improves the frame efficiency. Further, the frame efficiency may improve as the distance from the master node to the remote node increases.
Abstract:
One embodiment of the present invention provides a radio assembly. The radio assembly includes an antenna housing unit that houses a pair of reflectors which are situated on a front side of the antenna housing unit, a printed circuit board (PCB) that includes at least a transmitter and a receiver, and a backside cover. The PCB is situated within a cavity at a backside of the antenna housing unit and the backside cover covers the cavity, thereby enclosing the PCB within the antenna housing unit. One embodiment of the present invention provides a user interface for configuring a radio. The user interface includes a display and a number of selectable tabs presented on the display. A selection of a respective tab results in a number of user-editable fields being displayed, thereby facilitating a user in configuring and monitoring operations of the radio.
Abstract:
Systems and methods are presented that offer significant improvements in the performance of time division duplex (TDD) systems by utilizing an adaptive synchronous protocol. Conventional TDD systems are limited because data is transmitted during discreet and limited intervals of time, and because TDD transceivers may not simultaneously transmit and receive for reasons of insufficiently separated frequencies and limited receiver selectivity. Typically, TDD systems have significant latency due to the time to change from transmission to reception and the propagation delay time. By synchronizing the master nodes and the one or more remotes and by scheduling the traffic loads between these nodes, remote nodes may begin transmitting before the master node is finished with its transmission, and vice versa. This method reduces latency and improves the frame efficiency. Further, the frame efficiency may improve as the distance from the master node to the remote node increases.
Abstract:
Systems and methods are presented that offer significant improvements in the performance of time division duplex (TDD) systems by utilizing an adaptive synchronous protocol. Conventional TDD systems are limited because data is transmitted during discreet and limited intervals of time, and because TDD transceivers may not simultaneously transmit and receive for reasons of insufficiently separated frequencies and limited receiver selectivity. Typically, TDD systems have significant latency due to the time to change from transmission to reception and the propagation delay time. By synchronizing the master nodes and the one or more remotes and by scheduling the traffic loads between these nodes, remote nodes may begin transmitting before the master node is finished with its transmission, and vice versa. This method reduces latency and improves the frame efficiency. Further, the frame efficiency may improve as the distance from the master node to the remote node increases.
Abstract:
Systems and methods are presented that offer significant improvements in the performance of time division duplex (TDD) systems by utilizing an adaptive synchronous protocol. Conventional TDD systems are limited because data is transmitted during discreet and limited intervals of time, and because TDD transceivers may not simultaneously transmit and receive for reasons of insufficiently separated frequencies and limited receiver selectivity. Typically, TDD systems have significant latency due to the time to change from transmission to reception and the propagation delay time. By synchronizing the master nodes and the one or more remotes and by scheduling the traffic loads between these nodes, remote nodes may begin transmitting before the master node is finished with its transmission, and vice versa. This method reduces latency and improves the frame efficiency. Further, the frame efficiency may improve as the distance from the master node to the remote node increases.
Abstract:
One embodiment of the present invention provides a radio assembly. The radio assembly includes an antenna housing unit that houses a pair of reflectors which are situated on a front side of the antenna housing unit, a printed circuit board (PCB) that includes at least a transmitter and a receiver, and a backside cover. The PCB is situated within a cavity at a backside of the antenna housing unit and the backside cover covers the cavity, thereby enclosing the PCB within the antenna housing unit. One embodiment of the present invention provides a user interface for configuring a radio. The user interface includes a display and a number of selectable tabs presented on the display. A selection of a respective tab results in a number of user-editable fields being displayed, thereby facilitating a user in configuring and monitoring operations of the radio.
Abstract:
One embodiment of the present invention provides a radio assembly. The radio assembly includes an antenna housing unit that houses a pair of reflectors which are situated on a front side of the antenna housing unit, a printed circuit board (PCB) that includes at least a transmitter and a receiver, and a backside cover. The PCB is situated within a cavity at a backside of the antenna housing unit and the backside cover covers the cavity, thereby enclosing the PCB within the antenna housing unit. One embodiment of the present invention provides a user interface for configuring a radio. The user interface includes a display and a number of selectable tabs presented on the display. A selection of a respective tab results in a number of user-editable fields being displayed, thereby facilitating a user in configuring and monitoring operations of the radio.
Abstract:
One embodiment of the present invention provides a radio assembly. The radio assembly includes an antenna housing unit that houses a pair of reflectors which are situated on a front side of the antenna housing unit, a printed circuit board (PCB) that includes at least a transmitter and a receiver, and a backside cover. The PCB is situated within a cavity at a backside of the antenna housing unit and the backside cover covers the cavity, thereby enclosing the PCB within the antenna housing unit. One embodiment of the present invention provides a user interface for configuring a radio. The user interface includes a display and a number of selectable tabs presented on the display. A selection of a respective tab results in a number of user-editable fields being displayed, thereby facilitating a user in configuring and monitoring operations of the radio.
Abstract:
Systems and methods are presented that offer significant improvements in the performance of time division duplex (TDD) systems by utilizing an adaptive synchronous protocol. Conventional TDD systems are limited because data is transmitted during discreet and limited intervals of time, and because TDD transceivers may not simultaneously transmit and receive for reasons of insufficiently separated frequencies and limited receiver selectivity. Typically, TDD systems have significant latency due to the time to change from transmission to reception and the propagation delay time. By synchronizing the master nodes and the one or more remotes and by scheduling the traffic loads between these nodes, remote nodes may begin transmitting before the master node is finished with its transmission, and vice versa. This method reduces latency and improves the frame efficiency. Further, the frame efficiency may improve as the distance from the master node to the remote node increases.