摘要:
The present invention provides nanoparticle compositions comprising, for example, a core comprising a fluorescent silane compound; and a silica shell on the core. Also provided are methods for the preparation of nanoparticle compositions including fluorescent nanoparticles, ligated-fluorescent nanoparticles, ligated-fluorescent nanoparticles having therapeutic agents, and ligated-fluorescent nanoparticles coupled or associated with an analyte. Also provided are methods: for the detection of the ligated-fluorescent nanoparticles; for associating the linked-fluorescent nanoparticles with a cellular component of interest and recording or monitoring the movement of the cellular component; for improving the therapeutic properties of the therapeutic agent by combining the therapeutic agent with linked-fluorescent nanoparticles and contacting or administering the combination to a cell or organism; for making and using the fluorescent nanoparticles in, for example, diagnostic agents for the detection of various analytes, and like applications.
摘要:
Provided herein are core-shell silica nanoparticles with a dense silica shell. The nanoparticles have improved properties such as, for example, increased photo luminescence and stability. Also provided are methods for making the nanoparticles.
摘要:
Provided herein are core-shell silica nanoparticles with a dense silica shell. The nanoparticles have improved properties such as, for example, increased photo luminescence and stability. Also provided are methods for making the nanoparticles.
摘要:
The invention generally relates to fluorescent nanoparticles and more specifically to silica-based fluorescent nanoparticles of less than 30 nm with covalently attached organic dyes. The invention provides a fluorescent monodisperse silica nanoparticle comprising fluorophore center core and a silica shell wherein the radiative properties of the nanoparticle are dependent upon the chemistry (composition) of the core and presence of the silica shell. In one aspect of the invention, the core-shell architecture provides an enhancement in fluorescence quantum efficiency. The invention generally provides control of photophysical properties of dye molecules encapsulated within silica particles with sizes down to 30 nm and below. This control is accomplished through changes in silica chemistry and particle architecture on the nanometer size scale and results in significant brightness enhancement compared to free dye.
摘要:
Described herein are PEG-coated, core-shell nanoparticles, which display reduced aggregation and/or reduced non-specific or undesired attachment characteristics. These fluorescent nanoparticle include: a silica-based core having an organic functional group that includes a mercapto substituent, an organic fluorescent compound, a silica shell; and a silane-PEG compound. The silica shell of the nanoparticle encapsulates the silica-based core and the silane-PEG compound is conjugated to the silica shell.
摘要:
The present invention provides nanoparticle compositions comprising, for example, a core comprising a fluorescent silane compound; and a silica shell on the core. Also provided are methods for the preparation of nanoparticle compositions including fluorescent nanoparticles, ligated-fluorescent nanoparticles, ligated-fluorescent nanoparticles having therapeutic agents, and ligated-fluorescent nanoparticles coupled or associated with an analyte. Also provided are methods: for the detection of the ligated-fluorescent nanoparticles; for associating the linked-fluorescent nanoparticles with a cellular component of interest and recording or monitoring the movement of the cellular component; for improving the therapeutic properties of the therapeutic agent by combining the therapeutic agent with linked-fluorescent nanoparticles and contacting or administering the combination to a cell or organism; for making and using the fluorescent nanoparticles in, for example, diagnostic agents for the detection of various analytes, and like applications.