Abstract:
A reader device (110) for reading information transmitted from a transponder (120), the reader device (110) comprising a distance estimation unit (112) adapted for estimating a distance between the reader device (110) and the transponder (120) based on a propagation related difference of a property of two sidebands of a backscattering signal transmitted from the transponder (120).
Abstract:
The invention discloses a method for classifying a transponder (1) and/or signals originating from a transponder (1) and a reader (20) for the inventive method. According to the invention, a reader (20) receives a signal (27, 28) from the transponder (1) and determines the the velocity (v), with which the transponder (1) is moving. Finally, the transponder (1) and/or signals (28) originating from the transponder (1) are classified as valid or invalid in response to the determined velocity (v).
Abstract:
In a method of allocating digital data (55a, 55b) coming from transponders, a reader (1) receives a first signal (13) that comprises a first signal component (7) coming from a first transponder (2) and a second signal component (8) coming from a second transponder (3). The digital data (55a) coming from the first transponder (2) are encoded in the first signal component (7) and digital data (55b) coming from the second transponder (3) are encoded in the second signal component (8). Second and third signals (10, 11) are generated by subjecting the first signal (13) to an in-phase and to an in-quadrature demodulation. The digital data (55a, 55b) of the first and second transponders (2, 3) are encoded in the second and third signals (10, 11). Clusters (51-54) of the digital data (55 a, 55b) associated with a constellation diagram, which is related to the second and third signals (10, 11), are allocated to the first and second transponder (2, 3).
Abstract:
A reader device (110) for reading information transmitted from a transponder (130) via a backscatter signal (132) generated by the transponder (130) in response to a stimulus signal (112) generated by the reader device (110), the reader device (110) comprising a first power estimation unit (114) adapted for estimating a first power value indicative of the power of the stimulus signal (112) at a position of the transponder (130) by evaluating a power information included in the backscatter signal (132), a second power estimation unit (116) adapted for estimating a second power value indicative of the power of the backscatter signal (132) at a position of the reader device (110), and a distance estimation unit (118) adapted for estimating a distance (d1) between the reader device (110) and the transponder (130) based on the first power value and the second power value.
Abstract:
A reader device (110) for reading information transmitted from a transponder (130) via a backscatter signal (132) generated by the transponder (130) in response to a stimulus signal (112) generated by the reader device (110), the reader device (110) comprising a first power estimation unit (114) adapted for estimating a first power value indicative of the power of the stimulus signal (112) at a position of the transponder (130) by evaluating a power information included in the backscatter signal (132), a second power estimation unit (116) adapted for estimating a second power value indicative of the power of the backscatter signal (132) at a position of the reader device (110), and a distance estimation unit (118) adapted for estimating a distance (d1) between the reader device (110) and the transponder (130) based on the first power value and the second power value.
Abstract:
In a method of allocating digital data (55a, 55b) coming from transponders, a reader (1) receives a first signal (13) that comprises a first signal component (7) coming from a first transponder (2) and a second signal component (8) coming from a second transponder (3). The digital data (55a) coming from the first transponder (2) are encoded in the first signal component (7) and digital data (55b) coming from the second transponder (3) are encoded in the second signal component (8). Second and third signals (10, 11) are generated by subjecting the first signal (13) to an in-phase and to an in-quadrature demodulation. The digital data (55a, 55b) of the first and second transponders (2, 3) are encoded in the second and third signals (10, 11). Clusters (51-54) of the digital data (55 a, 55b) associated with a constellation diagram, which is related to the second and third signals (10, 11), are allocated to the first and second transponder (2, 3).