摘要:
Apparatus, method, and non-transitory medium for optical stabilization and digital image registration in scanning light ophthalmoscopy. Scanning an object with measurement light. Acquire an image of the object to be examined based on return light from the object. Acquire information which indicates movement of the object to be examined based on a plurality of acquired images. Control the scanning based on the information which indicates the movement of the object to be examined. Performing registration of the plurality of images.
摘要:
Apparatus, method, and non-transitory medium for optical stabilization and digital image registration in scanning light ophthalmoscopy. Scanning an object with measurement light. Acquire an image of the object to be examined based on return light from the object. Acquire information which indicates movement of the object to be examined based on a plurality of acquired images. Control the scanning based on the information which indicates the movement of the object to be examined. Performing registration of the plurality of images.
摘要:
Systems and methods of real-time laser control and modulation for ophthalmic devices are described. The systems and methods can be used for precise laser delivery at sub-micron resolution in both laser treatment and scan imaging processes. In various embodiments, the systems can include a laser delivery device useful for surgical eye treatment, a laser delivery device useful for an ophthalmic scan imaging device, or both. In one embodiment, the system includes a laser surgery device integrated with a scan-based ophthalmic imaging apparatus. In such an embodiment, an eye motion signal obtained from the imaging apparatus can be used to provide fine-tuned control of the operation of the surgical laser beam in the laser surgery device.
摘要:
A system, apparatus, and method of obtaining an image of a fundus. Acquiring a reference image of the fundus at a first point in time. Acquiring a target image of the fundus at a second point in time. The target imaging area may overlap with the reference imaging area. An area of the target imaging area may be less than an area of the reference imaging area. Estimating movement of the fundus may be based upon at least the target image and the reference image. Acquiring a narrow field image of the fundus. An area of the narrow field imaging area may be less than the area of the target imaging area. A position of the narrow imaging area on the fundus may be adjusted based on the estimated movement of the fundus.