Abstract:
Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, π-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.
Abstract:
Charge transport compounds are provided. The compounds are useful in optoelectronic devices that include the compounds incorporated as a charge-transport layer. Methods for forming films of the compounds are also provided. Additionally, methods are provided for forming films of a charge-transport layer on an active layer of an optoelectronic device. The films are formed from a solution with solubility orthogonal to the solubility of the active layer, such that the active layer is not solvated during deposition of the charge-transport layer.
Abstract:
Charge transport compounds are provided. The compounds are useful in optoelectronic devices that include the compounds incorporated as a charge-transport layer. Methods for forming films of the compounds are also provided. Additionally, methods are provided for forming films of a charge-transport layer on an active layer of an optoelectronic device. The films are formed from a solution with solubility orthogonal to the solubility of the active layer, such that the active layer is not solvated during deposition of the charge-transport layer.