Abstract:
According to an embodiment, a power generation system is provided comprising a wind power plant comprising a plurality of wind turbine generators and a power plant controller configured to signal, to at least a portion of the plurality of wind turbine generators, a voltage reference for the output voltage of the wind turbine generator wherein each wind turbine generator comprises a controller configured to control the wind turbine generator based on the voltage reference.
Abstract:
A method is provided of protecting a wind turbine with a doubly-fed induction generator (DFIG) against a sub-synchronous resonance (SSR) event acting on the wind turbine. A plurality of power-output values or current-output values is measured over a given period of time that corresponds to a measurement cycle. It is determined whether power-output values or current-output-values measured in the at-least-one measurement cycle are indicative of an SSR-event critical for further operation of the wind turbine. The wind turbine is shut down if the measured power-output values or current-output values are indeed indicative of an SSR-event critical for operation of the wind turbine.
Abstract:
A method is provided of controlling a doubly fed induction generator—(DFIG) wind turbine converter system if a sub-synchronous resonance event acts on the wind turbine. According to the method a sub-synchronous resonance event is detected. Thereupon, a switch from a non-SSR-current/voltage control mode to a SSR-control mode is performed. At least one of the following activities is performed in the SSR-control mode, namely: (i) freezing rotor AC voltages in magnitude and phase, (ii) altering at least one rotor-current-controller gain (iii) altering at least one rotor-current-controller time constant, to dampen the effect of the SSR-event on the wind turbine.