Abstract:
Interfaces to storage devices that employ storage space optimization technologies, such as thin provisioning, are configured to enable the benefits gained from such technologies to be sustained. Such an interface may be provided in a hypervisor of a virtualized computer system to enable the hypervisor to discover features of a logical unit number (LUN), such as whether or not the LUN is thinly provisioned, and also in a virtual machine (VM) of the virtualized computer system to enable the VM to discover features of a virtual disk, such as whether or not the virtual disk is thinly provisioned. The discovery of these features enables the hypervisor or the VM to instruct the underlying storage device to carry out certain operations such as an operation to deallocate blocks previously allocated to a logical block device, so that the storage device can continue to benefit from storage space optimization technologies implemented therein.
Abstract:
Interfaces to storage devices that employ storage space optimization technologies, such as thin provisioning, are configured to enable the benefits gained from such technologies to be sustained. Such an interface may be provided in a hypervisor of a virtualized computer system to enable the hypervisor to discover features of a logical unit number (LUN), such as whether or not the LUN is thinly provisioned, and also in a virtual machine (VM) of the virtualized computer system to enable the VM to discover features of a virtual disk, such as whether or not the virtual disk is thinly provisioned. The discovery of these features enables the hypervisor or the VM to instruct the underlying storage device to carry out certain operations such as an operation to deallocate blocks previously allocated to a logical block device, so that the storage device can continue to benefit from storage space optimization technologies implemented therein.
Abstract:
A framework for converting between copy-on-write (COW) and redo-based technologies is disclosed. To take a virtual disk snapshot, disk descriptor files, which include metadata information about data stored in virtual volumes (vvols), are “swizzled” such that the descriptor file for a latest redo log, to which IOs are currently performed, points to the base vvol of a COW-based vvol hierarchy. A disk descriptor file previously associated with the base vvol may also be updated to point to the vvol newly created by the snapshot operation. To revert to an earlier disk state, a snapshot may be taken before copying contents of a snapshot vvol of the COW-based vvol hierarchy to a base vvol of the hierarchy, thereby ensuring that the reversion can be rolled back if it is unsuccessful. Reference counting is performed to ensure that vvols in the vvol hierarchy are not orphaned in delete and revert use cases. Differences between vvols in the COW-based vvol hierarchy are used to clone the hierarchy and to migrate the hierarchy to a redo-based disk hierarchy.