摘要:
Various embodiments provide low adhesion coatings that can be used for an image-side member in an image fixing system of an electrophotographic printer or an ink jet printer, wherein the low adhesion coatings can exhibit a low sliding angle ranging from about 1° to about 30° with a solid ink, a toner, hexadecane and/or water.
摘要:
Various embodiments provide low adhesion coatings that can be used for an image-side member in an image fixing system of an electrophotographic printer or an ink jet printer, wherein the low adhesion coatings can exhibit a low sliding angle ranging from about 1° to about 30° with a solid ink, a toner, hexadecane and/or water.
摘要:
Various embodiments provide oleophobic, low adhesion coatings with high thermal stability and methods of forming and using them in an ink jet printhead, wherein the oleophobic, low adhesion coatings can include a sol-gel cross-linked coating by a self-condensation process of at least a silane-functionalized perfluoropolyether based polymer precursor.
摘要:
A coating for an ink jet printhead front face, wherein the coating comprises a low adhesion coating, wherein when the low adhesion coating is disposed on an ink jet printhead front face surface, jetted drops of ultra-violet gel ink or jetted drops of solid ink exhibit a low sliding angle with the printhead front face surface, wherein the low sliding angle is less than about 1° to less than about 30°. In embodiments, the low adhesion coating is an oleophobic coating that exhibits a contact angle of greater than about 35° with ultra-violet gel ink or solid ink.
摘要:
Exemplary embodiments provide materials and methods for ink jet printhead nozzle plate and related printing apparatus, wherein the ink jet printhead nozzle plate can include a coaxially electrospun layer to provide a low adhesion oleophobic textile surface exhibiting a low sliding angle and a high contact angle with ultra-violet gel ink and/or solid ink.
摘要:
Exemplary embodiments provide materials and methods for a printer member used in ink-jet marking systems that can include a layer electrospun over an aluminum roller to facilitate transport of a printable substrate having ink images thereon and to reduce ink offset from the printable substrate.
摘要:
A method and structure for an ink jet printhead aperture plate assembly which can be part of an ink jet printhead and an ink jet printer. The present teachings can include the use of a protective coverlay interposed between a press plate of a press and an anti-wetting coating on a polyimide layer which forms part of the aperture plate assembly. The coverlay can include a base material which has an elastic modulus which is at least a specified value. An embodiment of the present teachings can form an aperture plate assembly and an ink jet printhead having reduced dimpling and deformation around a nozzle opening in the aperture plate assembly.
摘要:
A coating for an ink jet printhead front face, wherein the coating comprises a low adhesion coating, wherein when the low adhesion coating is disposed on an ink jet printhead front face surface, jetted drops of ultra-violet gel ink or jetted drops of solid ink exhibit a low sliding angle with the printhead front face surface, wherein the low sliding angle is less than about 1° to less than about 30°. In embodiments, the low adhesion coating is an oleophobic coating that exhibits a contact angle of greater than about 35° with ultra-violet gel ink or solid ink.
摘要:
A method for producing an inkjet printhead that includes aligning and stacking together an aperture plate and a plurality of jetstack plates; bonding together the aperture plate and plurality of jetstack plates; after the bonding step, depositing a layer of coating material to a surface of the aperture plate by inkjet printing to form a coating on at least a portion of the surface of an outlet surface of the aperture plate; and curing the layer of coating material to form a cured coating. The method may also include forming a second cured coating.
摘要:
A coating for an ink jet printhead front face, wherein the coating comprises an oleophobic low adhesion coating having high thermal stability as indicated by less than about 15 percent weight loss when heated to up to 300° C., and wherein a drop of ultra-violet (UV) gel ink or a drop of solid ink exhibits a contact angle of greater than about 50° and sliding angle of less than about 30° with a surface of the coating, wherein the coating maintains the contact angle and sliding angle after the coating has been exposed to a temperature of at least 260° C. for at least 30 minutes.