Remote center of motion control for a surgical robot

    公开(公告)号:US11571267B2

    公开(公告)日:2023-02-07

    申请号:US16858010

    申请日:2020-04-24

    摘要: For control about a remote center of motion (RCM) of a surgical robotic system, possible configurations of a robotic manipulator are searched to find the configuration providing a greatest overlap of the workspace of the surgical instrument with the target anatomy. The force at the RCM may be measured, such as with one or more sensors on the cannula or in an adaptor connecting the robotic manipulator to the cannula. The measured force is used to determine a change in the RCM to minimize the force exerted on the patient at the RCM. Given this change, the configuration of the robotic manipulator may be dynamically updated. Various aspects of this RCM control may be used alone or in combination, such as to optimize the alignment of workspace to the target anatomy, to minimize force at the RCM, and/or to dynamically control the robotic manipulator configuration based on workspace alignment and force measurement.

    HOOKED SURGERY CAMERA
    2.
    发明申请

    公开(公告)号:US20200205931A1

    公开(公告)日:2020-07-02

    申请号:US16723778

    申请日:2019-12-20

    摘要: A hooked surgery camera for use in surgical robotic systems includes a hook coupled to a side or end of a camera body, for attaching the camera to tissue during a surgery. The camera also includes a lens on another end of the camera body, and electronic components inside the camera body. The electronic components include a battery, a digital camera module and a wireless data transmitter. The hooked surgery camera provides a supplementary view of the surgical site, that is from a different perspective than the view provided by an endoscope, during laparoscopic surgeries. Other aspects are also described and claimed.

    Remote center of motion control for a surgical robot

    公开(公告)号:US12029514B2

    公开(公告)日:2024-07-09

    申请号:US18075907

    申请日:2022-12-06

    摘要: For control about a remote center of motion (RCM) of a surgical robotic system, possible configurations of a robotic manipulator are searched to find the configuration providing a greatest overlap of the workspace of the surgical instrument with the target anatomy. The force at the RCM may be measured, such as with one or more sensors on the cannula or in an adaptor connecting the robotic manipulator to the cannula. The measured force is used to determine a change in the RCM to minimize the force exerted on the patient at the RCM. Given this change, the configuration of the robotic manipulator may be dynamically updated. Various aspects of this RCM control may be used alone or in combination, such as to optimize the alignment of workspace to the target anatomy, to minimize force at the RCM, and/or to dynamically control the robotic manipulator configuration based on workspace alignment and force measurement.