USER SWITCHING DETECTION DURING ROBOTIC SURGERIES USING DEEP LEARNING

    公开(公告)号:US20250054302A1

    公开(公告)日:2025-02-13

    申请号:US18809228

    申请日:2024-08-19

    Inventor: Meysam Torabi

    Abstract: Disclosed are various user-presence/absence detection techniques based on deep learning. These user-presence/absence detection techniques can include building/training a deep-learning model including a user-presence/absence classifier based on training images of a user-seating area of a surgeon console under various clinically-relevant conditions. The trained user-presence/absence classifier can then be used during teleoperation/surgical procedures to monitor/track users in the user-seating area of the surgeon console, and continuously classify captured real-time video images of the user-seating area into either a user-presence classification or a user-absence classification. In some embodiments, the disclosed techniques can be used to detect a user-switching event at the surgeon console when a second user is detected to have entered the user-seating area after a first user is detected to have exited the user-seating area. If the second user is identified as a new user, the disclosed techniques can trigger a recalibration procedure to recalibrate surgeon-console settings for the new user.

    Interlock mechanisms to disengage and engage a teleoperation mode

    公开(公告)号:US12213756B2

    公开(公告)日:2025-02-04

    申请号:US18470252

    申请日:2023-09-19

    Abstract: A method for engaging and disengaging a surgical instrument of a surgical robotic system comprising: receiving a plurality of interlock inputs from one or more interlock detection components of the surgical robotic system; determining, by one or more processors communicatively coupled to the interlock detection components, whether the plurality of interlock inputs indicate each of the following interlock requirements are satisfied: (1) a user is looking toward a display, (2) at least one or more user interface devices of the surgical robotic system are configured in a usable manner, and (3) a surgical workspace of the surgical robotic system is configured in a usable manner; in response to determining each of the interlock requirements are satisfied, transition the surgical robotic system into a teleoperation mode; and in response to determining less than all of the interlock requirements are satisfied, transition the surgical robotic system out of a teleoperation mode.

    Augmented reality headset for a surgical robot

    公开(公告)号:US12186138B2

    公开(公告)日:2025-01-07

    申请号:US17039949

    申请日:2020-09-30

    Abstract: Disclosed is an augmented reality (AR) headset that provides a wearer with spatial, system, and temporal contextual information of a surgical robotic system to guide the wearer in configuring, operating, or troubleshooting the surgical robotic system prior to, during, or after surgery. The spatial context information may be rendered to display spatially-fixed 3D-generated virtual models of the robotic arms, instruments, bed, and other components of the surgical robotic system that match the actual position or orientation of the surgical robotic system in the AR headset's coordinate frame. The AR headset may communicate with the surgical robotic system to receive real-time state information of the components of the surgical robotic system. The AR headset may use the real-time state information to display context-sensitive user interface information such as tips, suggestions, visual or audio cues on maneuvering the robotic arms and table to their target positions and orientations or for troubleshooting purpose.

    HARDSTOP DETECTION AND HANDLING FOR SURGICAL TOOL

    公开(公告)号:US20240366332A1

    公开(公告)日:2024-11-07

    申请号:US18774132

    申请日:2024-07-16

    Abstract: The disclosed embodiments relate to systems and methods for a surgical tool or a surgical robotic system. One example system for detecting a hardstop for a surgical tool includes a wrist connected to and driven by a plurality of cables of a tool driver, a plurality of sensors configured to detect forces associated with the plurality of cables one or more processors configured to perform a comparison of the forces associated with the plurality of cables, selected a highest tension cable from the plurality of cables based on the comparison of the forces associated with the plurality of cables, set a force assigned to the highest tension cable to a predetermined value, calculate a variable torque threshold for the wrist based on a sum of the predetermined value for the highest tension cable and detected forces for remaining cables in the plurality of cables, receive a joint torque value for the wrist, perform a comparison of the received joint torque value for the wrist to a variable wrist torque threshold and identify a hardstop based on the comparison of the received joint torque value for the wrist to the variable wrist torque threshold.

    Mitigating electromagnetic field distortion for a surgical robotic system

    公开(公告)号:US12133704B2

    公开(公告)日:2024-11-05

    申请号:US18305199

    申请日:2023-04-21

    Abstract: Surgical systems including a user console for controlling a surgical robotic tool are described. A witness sensor and a reference sensor can be mounted on the user console to measure an electromagnetic field distortion near a location, and to measure deformation of the location, respectively. Distortion in the electromagnetic field can be detected based on the measurements from the witness sensor and the reference sensor. An alert can be generated, or teleoperation of the surgical tool can be adjusted or paused, when a user interface device used to control the surgical tool is within a range of the distortion. The distortion can be from a known source, such as from actuation of a haptic motor of the user interface device, and the user console can adjust the actuation to reduce the likelihood that the distortion will disrupt surgical tool control. Other embodiments are described and claimed.

    Method and system for synchronizing playback of two recorded videos of the same surgical procedure

    公开(公告)号:US12120461B2

    公开(公告)日:2024-10-15

    申请号:US18312507

    申请日:2023-05-04

    CPC classification number: H04N7/169 G06V20/40 G11B27/323 G16H70/20 G06V20/44

    Abstract: This disclosure provides techniques of synchronizing the playback of two recorded videos of the same surgical procedure. In one aspect, a process for generating a composite video from two recorded videos of a surgical procedure is disclosed. This process begins by receiving a first and second surgical videos of the same surgical procedure. The process then performs phase segmentation on each of the first and second surgical videos to segment the first and second surgical videos into a first set of video segments and a second set of video segments, respectively, corresponding to a sequence of predefined phases. Next, the process time-aligns each video segment of a given predefined phase in the first video with a corresponding video segment of the given predefined phase in the second video. The process next displays the time-aligned first and second surgical videos for comparative viewing.

Patent Agency Ranking