摘要:
A composite structure is provided. The structure includes at least one ply of preimpregnated material formed into a curved elongated member of continuous fibers onto a mandrel. The fibers have a select orientation. The curved elongated member has a length and a cross-sectional geometry that varies along the length.
摘要:
A composite structure is provided. The structure includes at least one ply of preimpregnated material formed into a curved elongated member of continuous fibers onto a mandrel. The fibers have a select orientation. The curved elongated member has a length and a cross-sectional geometry that varies along the length.
摘要:
Methods of forming an elongated composite structural member are provided. One method includes, providing a substantially elongated mandrel having an exterior surface exhibiting a desired geometry. Laying up a first ply of preimpregnated fiber reinforced material over the mandrel. Applying a force to the first ply to establish a desired amount of tension within the first ply and then pressing the first ply onto the mandrel in a conformal manner. This includes passing at least one roller over the mandrel and the first ply while maintaining the desired amount of tension within the first ply. The at least one roller is at least partially complementary in shape with the mandrel.
摘要:
A composite structure is provided. In one embodiment, the structure includes at least one ply of preimpregnated material formed into a curved elongated member of continuous fibers onto a mandrel. The fibers have a select orientation and the curved elongated member has a defined length. The curved elongated member further has a cross-sectional geometry that varies along the length.
摘要:
Method of forming a curved composite structure are provided. In one embodiment, the method includes contacting at least one ply of preimpregnated material on a first surface of a curved mandrel. The first surface of the mandrel has a first radius of curvature. The mandrel further has at least one second surface that has a second radius of curvature. A tension gradient is introduced on the ply adjacent to the first radius of curvature and the ply is then pressed over the curved mandrel to form the curved composite structure.
摘要:
Stiffener tool positioning apparatus and methods are provided. In one embodiment, the apparatus includes a base, a first flipper member and second flipper member. The first flipper member is slide-ably attached to the base. The first flipper member is also configured to selectively attach a first mandrel thereon and to rotate the first mandrel. The second flipper member is also slide-ably attached to the base. The first and second flipper members are slide-ably positioned select distances from each other on the base in embodiments. The second mandrel is further configured to attach a second mandrel thereon and to rotate the second mandrel.
摘要:
Stiffener tool positioning apparatus and methods are provided. In one embodiment, the apparatus includes a base, a first flipper member and second flipper member. The first flipper member is slide-ably attached to the base. The first flipper member is also configured to selectively attach a first mandrel thereon and to rotate the first mandrel. The second flipper member is also slide-ably attached to the base. The first and second flipper members are slide-ably positioned select distances from each other on the base in embodiments. The second mandrel is further configured to attach a second mandrel thereon and to rotate the second mandrel.
摘要:
A material preparation device is provided. The material preparation device includes a bias-ply assembly, a feedstock assembly and an application head. The bias-ply assembly is configured to pass a bias-ply backing material along a first path. The feedstock assembly is configured to pass a feedstock along a second path that crosses the first path at a select angle. The feedstock includes resin pre-impregnated fiber reinforced material (pre-preg) having the fibers at a first orientation relative to an edge of the feedstock. The application head is configured to transfer the pre-preg from the feedstock to the bias-ply backing material at a location where the first path crosses the second path to form a bias-ply with the fibers of the pre-preg having a second different orientation relative to an edge of the formed bias-ply.