摘要:
Workflows for medical entities are determined and evaluated by determining a plurality of medical tasks based on an analysis of a plurality of electronic medical records of a medical entity. A workflow of the medical entity is determined based on a sequence of medical tasks, the sequence determined based on the analysis of the plurality of electronic medical records, and an evaluation of the workflow is performed based on a predefined criterion.
摘要:
Inclusion of a patient in a medical category is determined by triggering an analysis of an electronic medical record of the patient in response to an input of data into the electronic medical record. Identifying characteristics that indicate inclusion in the medical category with the analysis, and determining a probability the patient belongs to the medical category based on the identified characteristics.
摘要:
A predictive model of medical knowledge is trained from patient data of multiple different medical centers. The predictive model is machine learnt from routine patient data from multiple medical centers. Distributed learning avoids transfer of the patient data from any of the medical centers. Each medical center trains the predictive model from the local patient data. The learned statistics, and not patient data, are transmitted to a central server. The central server reconciles the statistics and proposes new statistics to each of the local medical centers. In an iterative approach, the predictive model is developed without transfer of patient data but with statistics responsive to patient data available from multiple medical centers. To assure comfort with the process, the transmitted statistics may be in a human readable format.
摘要:
Adaptive medical data collection for medical entities may involve triggering an analysis of electronic records in response to information input into an Electronic Medical Record (EMR) of a patient. Determining a potential condition for the patient based on the analysis. Identifying additional information indicated as relevant to the potential condition of the patient, and generating a request for the identified additional information.
摘要:
A method, including receiving a data source selection from a user or software application, the data source including medical information of a plurality of patients, receiving, from the user or software application, a data pattern that is related to a concept to be explored in the data source, querying the data source to find information that approximately matches the data pattern; and receiving the information from the data source, wherein the information includes unstructured data, assigning a classification to individual parts of the information based on the part's relationship to the data pattern, and outputting the classified information to the user or software application.
摘要:
A method, including receiving a data source selection from a user or software application, the data source including medical information of a plurality of patients, receiving, from the user or software application, a data pattern that is related to a concept to be explored in the data source, querying the data source to find information that approximately matches the data pattern; and receiving the information from the data source, wherein the information includes unstructured data, assigning a classification to individual parts of the information based on the part's relationship to the data pattern, and outputting the classified information to the user or software application.
摘要:
Automatic mapping of semantics in healthcare is provided. Data sets have different semantics (e.g., Gender designated with M and F in one system and Sex designated with 1 or 2 in another system). For semantic interoperability, the semantic links between the semantic systems of different healthcare entities are created (e.g., Gender=Sex and/or 1=F and 2=M) by a processor from statistics of the data itself. The distribution of variables, values, or variables and values, with or without other information and/or logic, is used to create a map from one semantic system to another. Similar distributions of other variable and/or values are likely to be for variables and/or values with the same meaning.
摘要:
An adverse event may be prevented by predicting the probability of a given patient to have or undergo the adverse event. The ability to predict the probability of the adverse event may be enhanced when a model is derived from public health data to categorize and propose values for medical record fields. The probability alone may prevent the adverse event by educating the patient or medical professional. The probability may be predicted at any time, such as upon entry of information for the patient, periodic analysis, or at the time of admission. The probability may be used to generate a workflow action item to reduce the probability, to warn, to output appropriate instructions, and/or assist in avoiding adverse event. The probability may be specific to a hospital, physician group, or other medical entity, allowing prevention to focus on past adverse event causes for the given entity.
摘要:
Hospital readmissions may be prevented. Readmission is prevented by predicting the probability of a given patient to be readmitted. The probability alone may prevent readmission by educating the patient or medical professional. The probability may be predicted during a patient stay and used to generate a workflow action item to reduce the probability, to warn, to output appropriate instructions, and/or assist in avoiding readmission. The probability may be specific to a hospital, physician group, or other entity, allowing prevention to focus on past readmission causes for the given entity.
摘要:
Computer-based patient management is provided for healthcare. Patient data is used to determine a severity, assign a patient to a corresponding diagnosis-related group, and provide a timeline for care at a medical facility. Reminders or alerts are sent to maintain the timeline for more cost effective care. Reminders, suggestions, transitions between care givers, scheduling and other risk management actions are performed. As more data becomes available as part of the care, the care and timeline may be adjusted automatically for more efficient utilization of resources. Accountable care optimization is provided as part of case management. Automated care before any injury or illness and automated care after discharge is provided to optimize the health and costs for a patient. The patient is assigned to the cohort based on the patient data.