-
公开(公告)号:US20140095203A1
公开(公告)日:2014-04-03
申请号:US14035989
申请日:2013-09-25
申请人: Vikram Anand , Balaji Krishnapuram , Glenn Fung , Shipeng Yu , Faisal Farooq , Jonathan D. Emanuele
发明人: Vikram Anand , Balaji Krishnapuram , Glenn Fung , Shipeng Yu , Faisal Farooq , Jonathan D. Emanuele
CPC分类号: G16H40/20 , G06F19/325 , G06Q10/0633 , G06Q50/22 , G06Q50/24 , G16H10/60 , G16H50/50
摘要: Workflows for medical entities are determined and evaluated by determining a plurality of medical tasks based on an analysis of a plurality of electronic medical records of a medical entity. A workflow of the medical entity is determined based on a sequence of medical tasks, the sequence determined based on the analysis of the plurality of electronic medical records, and an evaluation of the workflow is performed based on a predefined criterion.
摘要翻译: 通过基于对医疗实体的多个电子病历的分析来确定多个医疗任务来确定和评估医疗实体的工作流程。 基于医疗任务的顺序确定医疗实体的工作流程,该顺序是基于多个电子医疗记录的分析确定的顺序,并且基于预定义的标准来执行工作流程的评估。
-
公开(公告)号:US20140095206A1
公开(公告)日:2014-04-03
申请号:US14039125
申请日:2013-09-27
申请人: Glenn Fung , Balaji Krishnapuram , Faisal Farooq , Shipeng Yu , Mark Overhange , John Haley , Jan DeHaan , Vikram Anand
发明人: Glenn Fung , Balaji Krishnapuram , Faisal Farooq , Shipeng Yu , Mark Overhange , John Haley , Jan DeHaan , Vikram Anand
IPC分类号: G06F19/00
摘要: Adaptive medical data collection for medical entities may involve triggering an analysis of electronic records in response to information input into an Electronic Medical Record (EMR) of a patient. Determining a potential condition for the patient based on the analysis. Identifying additional information indicated as relevant to the potential condition of the patient, and generating a request for the identified additional information.
摘要翻译: 用于医疗实体的适应性医疗数据收集可以涉及触发对输入到患者的电子病历(EMR)的信息的电子记录的分析。 根据分析确定患者的潜在病情。 识别与患者的潜在状况相关的附加信息,并产生对所识别的附加信息的请求。
-
公开(公告)号:US20140095204A1
公开(公告)日:2014-04-03
申请号:US14037469
申请日:2013-09-26
申请人: Glenn Fung , Balaji Krishnapuram , Faisal Farooq , Shipeng Yu , Bharat R. Rao , Vikram Anand
发明人: Glenn Fung , Balaji Krishnapuram , Faisal Farooq , Shipeng Yu , Bharat R. Rao , Vikram Anand
IPC分类号: G06F19/00
摘要: Inclusion of a patient in a medical category is determined by triggering an analysis of an electronic medical record of the patient in response to an input of data into the electronic medical record. Identifying characteristics that indicate inclusion in the medical category with the analysis, and determining a probability the patient belongs to the medical category based on the identified characteristics.
摘要翻译: 通过响应于将数据输入到电子医疗记录中的触发对患者的电子医疗记录的分析来确定医疗类别中的患者的包含。 通过分析来识别指示包含在医疗类别中的特征,并且基于所识别的特征来确定患者属于医疗类别的概率。
-
4.
公开(公告)号:US20140088989A1
公开(公告)日:2014-03-27
申请号:US14027494
申请日:2013-09-16
申请人: Balaji Krishnapuram , Bharat R. Rao , Glenn Fung , Vikram Anand , Faisal Farooq , Wolfgang Wiessler , Shipeng Yu
发明人: Balaji Krishnapuram , Bharat R. Rao , Glenn Fung , Vikram Anand , Faisal Farooq , Wolfgang Wiessler , Shipeng Yu
IPC分类号: G06F19/00
摘要: A predictive model of medical knowledge is trained from patient data of multiple different medical centers. The predictive model is machine learnt from routine patient data from multiple medical centers. Distributed learning avoids transfer of the patient data from any of the medical centers. Each medical center trains the predictive model from the local patient data. The learned statistics, and not patient data, are transmitted to a central server. The central server reconciles the statistics and proposes new statistics to each of the local medical centers. In an iterative approach, the predictive model is developed without transfer of patient data but with statistics responsive to patient data available from multiple medical centers. To assure comfort with the process, the transmitted statistics may be in a human readable format.
摘要翻译: 医学知识的预测模型是从多个不同医疗中心的患者数据进行培训。 预测模型是从多个医疗中心的常规患者数据获得的机器。 分布式学习避免了从任何医疗中心转移患者数据。 每个医疗中心从当地患者数据中训练预测模型。 学习的统计信息而不是患者数据被传送到中央服务器。 中央服务器统计统计数据,并向每个当地医疗中心提出新的统计数据。 在迭代方法中,预测模型是在没有转移患者数据的情况下开发的,但是对于可从多个医疗中心获得的患者数据进行统计。 为了确保该过程的舒适度,所发送的统计数据可以是人类可读的格式。
-
-
-