Rapid Learning Community for Predictive Models of Medical Knowledge
    4.
    发明申请
    Rapid Learning Community for Predictive Models of Medical Knowledge 审中-公开
    医学知识预测模型快速学习社区

    公开(公告)号:US20140088989A1

    公开(公告)日:2014-03-27

    申请号:US14027494

    申请日:2013-09-16

    IPC分类号: G06F19/00

    CPC分类号: G16H50/70 G16H50/50

    摘要: A predictive model of medical knowledge is trained from patient data of multiple different medical centers. The predictive model is machine learnt from routine patient data from multiple medical centers. Distributed learning avoids transfer of the patient data from any of the medical centers. Each medical center trains the predictive model from the local patient data. The learned statistics, and not patient data, are transmitted to a central server. The central server reconciles the statistics and proposes new statistics to each of the local medical centers. In an iterative approach, the predictive model is developed without transfer of patient data but with statistics responsive to patient data available from multiple medical centers. To assure comfort with the process, the transmitted statistics may be in a human readable format.

    摘要翻译: 医学知识的预测模型是从多个不同医疗中心的患者数据进行培训。 预测模型是从多个医疗中心的常规患者数据获得的机器。 分布式学习避免了从任何医疗中心转移患者数据。 每个医疗中心从当地患者数据中训练预测模型。 学习的统计信息而不是患者数据被传送到中央服务器。 中央服务器统计统计数据,并向每个当地医疗中心提出新的统计数据。 在迭代方法中,预测模型是在没有转移患者数据的情况下开发的,但是对于可从多个医疗中心获得的患者数据进行统计。 为了确保该过程的舒适度,所发送的统计数据可以是人类可读的格式。