Abstract:
Circuits and a corresponding method are used to eliminate or greatly reduce SET induced glitch propagation in a radiation hardened integrated circuit. A clock distribution circuit and an integrated circuit portioning can be radiation hardened using one or two latch circuits interspersed through the integrated circuit, each having two or four latch stages.
Abstract:
Methods for patterning a conductor through oxidation are provided. Devices fabricated using the method include organic transistors having a gate electrode and dielectric layer patterned by the method, source and drain electrodes, and an organic semiconducting layer.
Abstract:
A method of forming an organic inverter includes providing a first metal layer having a first portion for coupling a source of an OFET to a first power supply voltage, a second portion for coupling a drain of the OFET to an output terminal and a first load resistor terminal, and a third portion for coupling a second load resistor terminal to a second power supply voltage, providing a semiconductor layer for overlapping a portion of the first and second first metal layer portions to form an OFET active area, and for overlapping a portion of the second and third metal layer portions to form a toad resistor, providing a dielectric layer for overlapping the active area of the OFET and the semiconductor area of the load resistor to isolates the first metal layer and semiconductor area from the second metal layer, and providing a second metal layer for overlapping the active area of the OFET to form a gate of the OFET and an input terminal.
Abstract:
A surface acoustic wave sensor to measure physical, biological or chemical parameters is claimed. Using different piezoelectric substrate materials, piezoelectric substrates with different thicknesses or metallizations with different thicknesses or patterns are used to distinguish between the effects of different physical, biological or chemical parameters.
Abstract:
A surface acoustic wave sensor to measure physical, biological or chemical parameters is claimed. Using different piezoelectric substrate materials, piezoelectric substrates with different thicknesses or metallizations with different thicknesses or patterns are used to distinguish between the effects of different physical, biological or chemical parameters.
Abstract:
A method of forming an organic inverter includes providing a first metal layer having a first portion for coupling a source of a first OFET to a first power supply voltage, a second portion for coupling a drain of the first OFET to an output terminal and to a source of a second OFET, and a third portion for coupling a drain of the second OFET to a second power supply voltage, providing a semiconductor layer for overlapping a portion of the first and second first metal layer portions to form a first OFET active area, and for overlapping a portion of the second and third metal layer portions to form a second OFET active area, providing a dielectric layer for overlapping the active area and isolates the first metal layer and semiconductor layer from the second metal layer, and providing a second metal layer for overlapping the active area of the first OFET to form a gate of the first OFET and an input terminal, and for overlapping the active area of the second OFET to form a floating gate for the second OFET.
Abstract:
Circuits and a corresponding method are used to eliminate or greatly reduce SET induced glitch propagation in a radiation hardened integrated circuit. A clock distribution circuit and an integrated circuit portioning can be radiation hardened using one or two latch circuits interspersed through the integrated circuit, each having two or four latch stages.
Abstract:
An OFET includes a thick dielectric layer with openings in the active region of a transistor. After the field dielectric layer is formed, semiconductor ink is dropped in the active region cavities in the field dielectric layer, forming the semiconductor layer. The ink is bounded by the field dielectric layer walls. After the semiconductor layer is annealed, dielectric ink is dropped into the same cavities. As with the semiconductor ink, the field dielectric wall confines the flow of the dielectric ink. The confined flow causes the dielectric ink to pool into the cavity, forming a uniform layer within the cavity, and thereby decreasing the probability of pinhole shorting. After the dielectric is annealed, a gate layer covers the active region thereby completing a high performance OFET structure.
Abstract:
A method of forming an organic inverter includes providing a first metal layer having a first portion for coupling a source of a first OFET to a first power supply voltage, a second portion for coupling a drain of the first OFET to an output terminal and to a source of a second OFET, and a third portion for coupling a drain of the second OFET to a second power supply voltage, providing a semiconductor layer for overlapping a portion of the first and second first metal layer portions to form a first OFET active area, and for overlapping a portion of the second and third metal layer portions to form a second OFET active area, providing a dielectric layer for overlapping the active area and isolates the first metal layer and semiconductor layer from the second metal layer, and providing a second metal layer for overlapping the active area of the first OFET to form a gate of the first OFET and an input terminal, and for overlapping the active area of the second OFET to form a floating gate for the second OFET.
Abstract:
A method of forming an organic inverter includes providing a first metal layer having a first portion for coupling a source of an OFET to a first power supply voltage, a second portion for coupling a drain of the OFET to an output terminal and a first load resistor terminal, and a third portion for coupling a second load resistor terminal to a second power supply voltage, providing a semiconductor layer for overlapping a portion of the first and second first metal layer portions to form an OFET active area, and for overlapping a portion of the second and third metal layer portions to form a toad resistor, providing a dielectric layer for overlapping the active area of the OFET and the semiconductor area of the load resistor to isolates the first metal layer and semiconductor area from the second metal layer, and providing a second metal layer for overlapping the active area of the OFET to form a gate of the OFET and an input terminal.