摘要:
A method for preserving a digitally signed document (160) in a digital data preservation system (10). A secure preservation request (176) combines the document (160) with a preservation signature (174) that is generated using an identification mark (172) and the document's associated digital signature (168). Once the document (160) is authenticated by the digital preservation system vendor, both the document (160) and the identification mark (172) are recorded onto preservation media (210) in human-readable form.
摘要:
A digital preservation system (10) for accepting a digital data record as input, for providing a preview of the digital data record on a display screen (80), for writing the data record in human-readable form onto a preservation-quality medium (210), for storage of the medium (210), and for retrieval of the data record from the medium (210). The digital preservation system (10) preserves a data record in human-readable form, along with an associated metadata record, allowing the human-readable preserved data record to be readable in the distant future, independent of specific reading hardware. The preview function allows an operator to specify storage and retrieval characteristics for the data record.
摘要:
A method for decoding data that has been encoded in a monochrome medium utilizing the capability of the medium for grayscale resolution. A document is processed to provide an image in electronic format, in which each pixel has an assigned data value with a given bit depth. A mapping operation is performed for generating a monochrome data word (120), preferably having a reduced bit depth. The monochrome data word (120) can be used to encode multiple data fields (114, 116, 118). A printer (92) then produces a preserved document record (90) in which the appropriate monochrome data word (120) determines the grayscale value for each pixel. To decode the stored data, a scanner (86) is employed to obtain the grayscale value from the preserved document record (90). For each pixel, the grayscale value is then decomposed into multiple data fields (114, 116, 118), which can then be decoded to provide the information that was originally encoded.
摘要:
An apparatus and method for printing images from a digital image source onto a photosensitive medium (22) using one or more two-dimensional light-emissive arrays (51) such as OLED arrays. Each image pixel has a corresponding light-emitting element which is assigned a variable intensity based on data for that pixel. Imaging optics (58) direct the light from each light-emitting element onto the photosensitive medium (22) so that a monochromatic or multicolor image can be formed with a single exposure.
摘要:
A digital preservation system (10) for accepting a digital data record as input, for providing a preview of the digital data record on a display screen (80), for writing the data record in human-readable form onto a preservation-quality medium (210), for storage of the medium (210), and for retrieval of the data record from the medium (210. The digital preservation system (10) preserves a data record in human-readable form, along with an associated metadata record, allowing the human-readable preserved data record to be readable in the distant future, independent of specific reading hardware. A preview function allows an operator to specify storage and retrieval characteristics for the data record.
摘要:
A method for encoding data in a monochrome media utilizing the capability of the media for grayscale resolution. A document is processed to provide an image in electronic format, in which each pixel has an assigned data value with a given bit depth. A mapping operation is performed for generating a monochrome data word (120), preferably having a reduced bit depth. The monochrome data word (120) can be used to encode multiple data fields (114, 116, 118). A printer (92) then produces a preserved document record (90) in which the appropriate monochrome data word (120) determines the grayscale value for each pixel.
摘要:
An apparatus for obtaining a retinal image of an eye has a control logic processor (214) for executing a sequence of operations for obtaining the image. A visual target (162) orients the eye of a patient when viewed. An indicator element (410) provides a signal that indicates that the patient is in position. A cornea focus detection section (450) indicates cornea focus, in cooperation with the control logic processor (214). An alignment actuator aligns the optical path according to a signal obtained from the cornea focus detection section (450). A retina focus detection section (452) detects retina focus in cooperation with the control logic processor (214). A focusing actuator (406) is controlled by instructions from the control logic processor (214) according to a signal obtained from the retina focus detection section (452). An image capture light source is energized by the control logic processor (214) for illuminating the retina.