摘要:
Systems for analyzing fluids (e.g., gases) include a chamber structure with a reflective inner surface, emitters, a primary detector positioned to principally detect electromagnetic energy reflected numerous times through the gas(es) and a calibration detector positioned to detect electromagnetic energy not reflected numerous times through the gas(es). Calibration may be automatically performed. The primary detector relies principally on Raleigh scattering. An optional primary detector may be positioned to principally detect Raman scattered electromagnetic energy.
摘要:
Sampling device geometry reduces specular reflectance, using lenses to focus electromagnetic energy to predominately return scattered rather than reflected electromagnetic energy to detector(s), reducing effect of non-matte surfaces and/or window. Sampling device includes inherent automatic optical calibration, and optionally thermal calibration. Calibration detectors are optically isolated with respective emitters.
摘要:
Systems for analyzing fluids (e.g., gases) include a chamber structure with a reflective inner surface, emitters, a primary detector positioned to principally detect electromagnetic energy reflected numerous times through the gas(es) and a calibration detector positioned to detect electromagnetic energy not reflected numerous times through the gas(es). Calibration may be automatically performed. The primary detector relies principally on Raleigh scattering. An optional primary detector may be positioned to principally detect Raman scattered electromagnetic energy.
摘要:
A portable, tabletop fluid sampling device simplifies spectral analysis to produce an accurate but inexpensive chromatic fingerprint for fluid samples. In one embodiment, the sampling device uses an array of variable wavelength LED emitters and photodiode detectors to measure Rayleigh scattering of electromagnetic energy from the fluid sample contained in a cuvette. Either the fluid itself, or particles suspended in the fluid can then be identified by performing spectral pattern matching to compare results of a spectral scan against a library of known spectra. A wide range of applications include substance identification, security screening, authentication, quality control, and medical diagnostics.
摘要:
A portable, tabletop fluid sampling device simplifies spectral analysis to produce an accurate but inexpensive chromatic fingerprint for fluid samples. In one embodiment, the sampling device uses an array of variable wavelength LED emitters and photodiode detectors to measure Rayleigh scattering of electromagnetic energy from the fluid sample contained in a cuvette. Either the fluid itself, or particles suspended in the fluid can then be identified by performing spectral pattern matching to compare results of a spectral scan against a library of known spectra. A wide range of applications include substance identification, security screening, authentication, quality control, and medical diagnostics.
摘要:
A portable, tabletop fluid sampling device simplifies spectral analysis to produce an accurate but inexpensive chromatic fingerprint for fluid samples. In one embodiment, the sampling device uses an array of variable wavelength LED emitters and photodiode detectors to measure Rayleigh scattering of electromagnetic energy from the fluid sample contained in a cuvette. Either the fluid itself, or particles suspended in the fluid can then be identified by performing spectral pattern matching to compare results of a spectral scan against a library of known spectra. A wide range of applications include substance identification, security screening, authentication, quality control, and medical diagnostics.
摘要:
A portable, tabletop fluid sampling device simplifies spectral analysis to produce an accurate but inexpensive chromatic fingerprint for fluid samples. In one embodiment, the sampling device uses an array of variable wavelength LED emitters and photodiode detectors to measure Rayleigh scattering of electromagnetic energy from the fluid sample contained in a cuvette. Either the fluid itself, or particles suspended in the fluid can then be identified by performing spectral pattern matching to compare results of a spectral scan against a library of known spectra. A wide range of applications include substance identification, security screening, authentication, quality control, and medical diagnostics.
摘要:
Sampling device geometry reduces specular reflectance, using lenses to focus electromagnetic energy to predominately return scattered rather than reflected electromagnetic energy to detector(s), reducing effect of non-matte surfaces and/or window. Sampling device includes inherent automatic optical calibration, and optionally thermal calibration. Calibration detectors are optically isolated with respective emitters.