-
公开(公告)号:US06985223B2
公开(公告)日:2006-01-10
申请号:US10753155
申请日:2004-01-06
IPC分类号: G01J3/44
CPC分类号: G01N21/658 , G01N2021/656 , G01Q60/22
摘要: A Raman imaging and sensing apparatus is described. The apparatus employs a nanoantenna structure which includes a metal tip spaced from a metal surface or particle. A light beam impinges upon the nanoantenna and causes plasmon resonance. The plasmon resonance excites a sample resulting in dramatically enhanced Raman scattering of the sample. The Raman scatter is collected by a spectrophotometer which provides an output signal indicative of the composition of the sample.
摘要翻译: 描述了拉曼成像和感测装置。 该装置采用纳米天线结构,其包括与金属表面或颗粒间隔开的金属尖端。 光束撞击纳米天线并引起等离子体共振。 等离子体共振激发样品,导致样品的拉曼散射显着增加。 通过分光光度计收集拉曼散射,其提供指示样品组成的输出信号。
-
公开(公告)号:US06608716B1
公开(公告)日:2003-08-19
申请号:US09572721
申请日:2000-05-16
申请人: Robert L. Armstrong , Vladimir M. Shalaev , Thomas M. Shay , Won-Tae Kim , Z. Charles Ying , Vladimir P. Drachev , Vladimir P. Safonov
发明人: Robert L. Armstrong , Vladimir M. Shalaev , Thomas M. Shay , Won-Tae Kim , Z. Charles Ying , Vladimir P. Drachev , Vladimir P. Safonov
IPC分类号: H01S300
CPC分类号: G01N21/658 , B82Y10/00 , B82Y20/00 , G02F1/353 , G02F1/3534 , G02F1/3536 , G02F1/3538 , G02F1/355 , G02F1/37 , G02F1/39 , G02F2202/36 , G02F2203/15 , G11B7/00453 , H01S3/0602 , H01S3/30
摘要: A method and apparatus for enhanced optical emissions, the apparatus comprising a light source, a microcavity, and a medium comprising nanoparticles, located within or near the microcavity. The nanoparticles are either non-aggregated or are aggregated in the form of fractals. The nanoparticles and microcavity exhibit enhanced linear and non-linear optical emission. The light emitting apparatus can be used for wavelength translation, amplification, optical parametric oscillation, light detection and ranging, increased sensitivity, high density optical data storage, and near-field optical spectroscopy.
摘要翻译: 一种用于增强光发射的方法和装置,该装置包括位于微腔内或附近的光源,微腔和包含纳米颗粒的介质。 纳米颗粒是非聚集的或以分形的形式聚集。 纳米颗粒和微腔表现出增强的线性和非线性光发射。 发光装置可用于波长转换,放大,光参量振荡,光检测和测距,增加的灵敏度,高密度光学数据存储和近场光谱。
-
公开(公告)号:US08599489B2
公开(公告)日:2013-12-03
申请号:US12449604
申请日:2008-02-26
摘要: A tunable super-lens (TSL) for nanoscale optical sensing and imaging of bio-molecules and nano-manufacturing utilizes negative-index materials (NIMs) that operate in the visible or near infrared light. The NIMs can create a lens that will perform sub-wavelength imaging, enhanced resolution imaging, or flat lens imaging. This new TSL covers two different operation scales. For short distances between the object and its image, a near-field super-lens (NFSL) can create or enhance images of objects located at distances much less than the wavelength of light. For the far-zone, negative values are necessary for both the permittivity ∈ a permeability μ. While well-structured periodic meta-materials, which require delicate design and precise fabrication, can be used, metal-dielectric composites are also candidates for NIMs in the optical range. The negative-refraction in the composite films can be made by using frequency-selective photomodification.
摘要翻译: 用于纳米尺度光学感测和生物分子和纳米制造成像的可调超透镜(TSL)利用在可见光或近红外光下工作的负指数材料(NIM)。 NIM可以创建将执行亚波长成像,增强分辨率成像或平面透镜成像的镜头。 这个新的TSL涵盖两个不同的操作规模。 对于物体与其图像之间的距离较短,近场超透镜(NFSL)可以创建或增强距离远于光波长的距离的物体的图像。 对于远区,对于介电常数E为渗透率μ而言,负值是必需的。 虽然可以使用需要精细设计和精确制造的良好结构的周期性超常材料,但是金属 - 介电复合材料也是光学范围中NIM的候选者。 复合膜中的负折射可以通过使用频率选择性光改性来制造。
-
公开(公告)号:US20100134898A1
公开(公告)日:2010-06-03
申请号:US12449604
申请日:2008-02-26
摘要: A tunable super-lens (TSL) for nanoscale optical sensing and imaging of bio-molecules and nano-manufacturing utilizes negative-index materials (NIMs) that operate in the visible or near infrared light. The NIMs can create a lens that will perform sub-wavelength imaging, enhanced resolution imaging, or flat lens imaging. This new TSL covers two different operation scales. For short distances between the object and its image, a near-field super-lens (NFSL) can create or enhance images of objects located at distances much less than the wavelength of light. For the far-zone, negative values are necessary for both the permittivity ε a permeability μ. While well-structured periodic meta-materials, which require delicate design and precise fabrication, can be used, metal-dielectric composites are also candidates for NIMs in the optical range. The negative-refraction in the composite films can be made by using frequency-selective photomodification.
摘要翻译: 用于纳米尺度光学感测和生物分子和纳米制造成像的可调超透镜(TSL)利用在可见光或近红外光下工作的负指数材料(NIM)。 NIM可以创建将执行亚波长成像,增强分辨率成像或平面透镜成像的镜头。 这个新的TSL涵盖两个不同的操作规模。 对于物体与其图像之间的距离较短,近场超透镜(NFSL)可以创建或增强距离远于光波长的距离的物体的图像。 对于远区来说,负值必须用于介电常数和等级 磁导率μ。 虽然可以使用需要精细设计和精确制造的良好结构的周期性超常材料,但是金属 - 介电复合材料也是光学范围中NIM的候选者。 复合膜中的负折射可以通过使用频率选择性光改性来制造。
-
公开(公告)号:US20090219623A1
公开(公告)日:2009-09-03
申请号:US12224196
申请日:2007-02-28
CPC分类号: G01J3/02 , B82Y20/00 , G01J3/0256 , G01J3/0297 , G02B1/007 , G02B6/1225 , G02B6/1226 , H01S3/0632 , H01S3/1608 , H01S3/169
摘要: A composition of resonant passive metal-dielectric elements with gain medium results in a meta-material with an effective negative refractive index and compensated losses. To compensate for losses, additional energy is supplied using the stimulated emission from active elements made of a gain material. The overall objective is to overcome the fundamental threshold in resolution for conventional optical imaging limited to about a half-wavelength of incident light. The negative index material with compensated losses (NIMCOL) can be used in NIM-based optical imaging and sensing devices with enhanced sub-wavelength resolution. A lasing device based on overcompensating for the loss in NIM structures is disclosed as well.
摘要翻译: 具有增益介质的谐振无源金属 - 介电元件的组成导致具有有效负折射率和补偿损耗的超常材料。 为了补偿损耗,使用由增益材料制成的有源元件的受激发射来提供额外的能量。 总体目标是克服限于约半波长的入射光的常规光学成像的分辨率的基本阈值。 具有补偿损耗的负指数材料(NIMCOL)可用于具有增强的亚波长分辨率的基于NIM的光学成像和感测装置。 还公开了一种基于对NIM结构的损耗进行过补偿的激光装置。
-
公开(公告)号:US07298474B2
公开(公告)日:2007-11-20
申请号:US11102346
申请日:2005-04-08
IPC分类号: G01J3/44
CPC分类号: G01N21/658 , G01N15/1434 , G01N27/44721 , G01N30/74 , G01N33/54373 , G01N2030/027
摘要: Instruments for molecular detection at the nano-molar to femto-molar concentration level include a longitudinal capillary column (10) of known wall thickness and diameter. The column (10) contains a medium (24) including a target molecule (30) and a plurality of optically interactive dielectric beads (26) on the order of about 10−6 meters up to about 10−3 meters and/or metal nanoparticles (31) on the order of 1-500 nm. A flow inducer (34) causes longitudinal movement of the target molecule within the column (10). A laser (14) introduces energy laterally with respect to the column (10) at a wavelength and in a direction selected to have a resonant mode within the capillary column wall (12) and couple to the medium (24). A detector (40) is positioned to detect Raman scattering occurring along the column (10) due to the presence of the target molecule.
摘要翻译: 在纳摩尔至毫摩尔浓度水平下用于分子检测的仪器包括具有已知壁厚和直径的纵向毛细管柱(10)。 柱(10)包含包含目标分子(30)和大约10 -6毫米至约10微米的多个光学交互的电介质珠(26)的介质(24) 和/或大约1-500nm的金属纳米粒子(31)。 流动诱导器(34)引起靶分子在柱(10)内的纵向运动。 激光器(14)相对于柱(10)在波长和选择为在毛细管柱壁(12)内具有共振模式并耦合到介质(24)的方向上横向引入能量。 定位探测器(40)以检测由于靶分子的存在而沿塔(10)发生的拉曼散射。
-
-
-
-
-