摘要:
A system, method and article of manufacture are provided for calculating a level of detail (LOD) value for use during computer graphics processing. First, a plurality of geometrically arranged coordinates is identified. A distance value is computed based on the geometrically arranged coordinates. A LOD value is then calculated using the distance value for use during computer graphics processing. In one embodiment, a derivative value is estimated based on the geometrically arranged coordinates, and the distance value is computed based on the derivative value.
摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
摘要:
A system, method and computer program product are provided for performing depth testing and blending operations in a first mode and a second mode. In the first mode, a circuit processes a first number (m) of first pixels per clock cycle, each of the first pixels including both color values and depth values. In the second mode, the circuit processes a second number (n) of second pixels per clock cycle. Each of the second pixels includes the depth values and not the color values. Further, the second number (n) is greater than the first number (m).
摘要:
A computer-implemented method for generating three-dimensional images by reusing multisample memory. Pixels corresponding to a first section of the overall display are multisampled. The multisampled pixel values corresponding to the first section of the display are stored in a multisample memory. The final pixel values corresponding to the first section of the display are stored in a frame buffer. Thereupon, multisampling is performed on those pixels belonging to a second section of the overall display. The same multisample memory is reused to store the multisampled pixel values corresponding to the second section of the display. In other words, the same piece of multisample memory is shared between the first and second portions of the display, thereby minimizing the amount of multisample memory that is needed. The final pixel values corresponding to the second section of the display are stored in the frame buffer. This process is repeated until multisampling has been performed over the entire display area. Meanwhile, pixel values from the frame buffer are being rendered out for display.
摘要:
A graphics pipeline system is provided with an integrated clipping operation. First included is a transform module adapted for being coupled to a buffer to receive graphics data therefrom. Such transform module is positioned on a single semiconductor platform for transforming the graphics data from a first space to a second space. Also provided is a lighting module coupled to the transform module and positioned on the same single semiconductor platform as the transform module. The lighting module is adapted for performing lighting operations on the graphics data received from the transform module. A range clamp inversion function and a clipping operation are performed on the same single semiconductor platform as the transform module and the lighting module.
摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
摘要:
A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.