摘要:
Techniques for improving treatment delivered to a target site in a patient include delivering a treatment from a treatment delivery device to a target site in a patient supported by a patient support structure. During the delivery of treatment, a state of the patient is measured to produce real-time measurement data. Measuring the state is non-invasive; and the measured state is a correlated surrogate for position of the target site. Compensating movement data is determined based on the real-time measurement data to cause the target site to maintain a particular spatial relationship with the treatment delivery device. Either the treatment delivery device, or the support structure, or both, are moved based on the compensating movement data. When the delivery device alone is moved, the correlation between measured state and target site is based on partial least squares applied to pre-treatment measurements of both.
摘要:
Techniques for improving treatment delivered to a target site in a patient include delivering a treatment from a treatment delivery device to a target site in a patient supported by a patient support structure. During the delivery of treatment, a state of the patient is measured to produce real-time measurement data. Measuring the state is non-invasive; and the measured state is a correlated surrogate for position of the target site. Compensating movement data is determined based on the real-time measurement data to cause the target site to maintain a particular spatial relationship with the treatment delivery device. Either the treatment delivery device, or the support structure, or both, are moved based on the compensating movement data. When the delivery device alone is moved, the correlation between measured state and target site is based on partial least squares applied to pre-treatment measurements of both.
摘要:
Disclosed is a method for operating a sensor to differentiate between first and second analytes in a sample. The method comprises the steps of determining a input profile for the sensor which will enhance the difference in the output profiles of the sensor as between the first analyte and the second analyte; determining a first analyte output profile as observed when the input profile is applied to the sensor; determining a second analyte output profile as observed when the temperature profile is applied to the sensor; introducing the sensor to the sample while applying the temperature profile to the sensor, thereby obtaining a sample output profile; and evaluating the sample output profile as against the first and second analyte output profiles to thereby determine which of the analytes is present in the sample.