摘要:
A wavelength division multiplexing system has a wavelength division multiplexer and a wavelength division demultiplexer. The wavelength division demultiplexer is in series with the wavelength division multiplexer to process at least one optical signal to generate at least one processed optical signal. The wavelength division multiplexer and the wavelength division demultiplexer cooperate to introduce substantially zero total chromatic dispersion in the processed optical signal. In one version, the wavelength division multiplexer and the wavelength division demultiplexer introduce opposing functions of chromatic dispersion into the at least one processed optical signal.
摘要:
A wavelength division multiplexing system has a wavelength division multiplexer and a wavelength division demultiplexer. The wavelength division demultiplexer is in series with the wavelength division multiplexer to process at least one optical signal to generate at least one processed optical signal. The wavelength division multiplexer and the wavelength division demultiplexer cooperate to introduce substantially zero total chromatic dispersion in the processed optical signal. In one version, the wavelength division multiplexer and the wavelength division demultiplexer introduce opposing functions of chromatic dispersion into the at least one processed optical signal.
摘要:
An optical receiver includes a first substrate including a demultiplexer and a first optical waveguide array. An input of the demultiplexer is configured to receive a wavelength division multiplexed optical input signal having a plurality of channels. Each of the plurality of channels corresponds to one of a plurality of wavelengths. Each of the plurality of outputs is configured to supply a corresponding one of the plurality of channels. The first optical waveguide array has a plurality of inputs. Each of the inputs of the first optical waveguide array is configured to receive a corresponding one of the plurality of channels. A second substrate is in signal communication with the first substrate and includes an optical detector array. The optical detector array has a plurality of inputs, each of which is configured to receive a corresponding one of the plurality of channels and generate an electrical signal in response thereto.
摘要:
An optical receiver includes a first substrate including a demultiplexer and a first optical waveguide array. An input of the demultiplexer is configured to receive a wavelength division multiplexed optical input signal having a plurality of channels. Each of the plurality of channels corresponds to one of a plurality of wavelengths. Each of the plurality of outputs is configured to supply a corresponding one of the plurality of channels. The first optical waveguide array has a plurality of inputs. Each of the inputs of the first optical waveguide array is configured to receive a corresponding one of the plurality of channels. A second substrate is in signal communication with the first substrate and includes an optical detector array. The optical detector array has a plurality of inputs, each of which is configured to receive a corresponding one of the plurality of channels and generate an electrical signal in response thereto.
摘要:
A planar lightwave circuit (PLC) includes a substrate, a tunable filter, a demultiplexer (DEMUX), and an optical processor each disposed on the substrate. The tunable filter is configured to filter at least one of a bandwidth or a wavelength of a Wavelength Division Multiplexed (WDM) optical input signal. The DEMUX is connected to the tunable filter and configured to receive a filtered WDM optical input signal at an input and to supply one of a plurality of channels of the filtered WDM input signal at a respective one of a plurality of outputs. Each of the plurality of channels corresponds to one of a plurality of wavelengths of the filtered WDM input signal. The optical processor includes a bit-delay interferometer communicating with a respective one of the plurality of outputs of the DEMUX. The optical processor is configured to receive one of the plurality of channels from the DEMUX and output a plurality of demodulated optical signal components.
摘要:
A planar lightwave circuit (PLC) includes a substrate, a tunable filter, a demultiplexer (DEMUX), and an optical processor each disposed on the substrate. The tunable filter is configured to filter at least one of a bandwidth or a wavelength of a Wavelength Division Multiplexed (WDM) optical input signal. The DEMUX is connected to the tunable filter and configured to receive a filtered WDM optical input signal at an input and to supply one of a plurality of channels of the filtered WDM input signal at a respective one of a plurality of outputs. Each of the plurality of channels corresponds to one of a plurality of wavelengths of the filtered WDM input signal. The optical processor includes a bit-delay interferometer communicating with a respective one of the plurality of outputs of the DEMUX. The optical processor is configured to receive one of the plurality of channels from the DEMUX and output a plurality of demodulated optical signal components.
摘要:
A method for performing adaptive equalization is presented comprising receiving a Forward Error Correction (FEC) encoded signal from a channel, filtering the received FEC encoded signal using a filter according to at least one adjustable filter coefficient to produce a filtered signal, evaluating the filtered signal to generate a signal error output, adjusting the at least one adjustable filter coefficient in response to the signal error output, performing FEC decode processing dependent on the filtered signal to generate an FEC output, and adjusting the at least one adjustable filter coefficient in response to the FEC output. In one embodiment, the signal error output relates to Mean Squared Error (MSE), and the FEC output relates to bit error rate. The at least one adjustable filter coefficient may be first adjusted in response to the signal error output until a specified condition is met, then adjusted in response to the FEC output.
摘要:
A method for performing adaptive equalization is presented comprising receiving a Forward Error Correction (FEC) encoded signal from a channel, filtering the received FEC encoded signal using a filter according to at least one adjustable filter coefficient to produce a filtered signal, evaluating the filtered signal to generate a signal error output, adjusting the at least one adjustable filter coefficient in response to the signal error output, performing FEC decode processing dependent on the filtered signal to generate an FEC output, and adjusting the at least one adjustable filter coefficient in response to the FEC output. In one embodiment, the signal error output relates to Mean Squared Error (MSE), and the FEC output relates to bit error rate. The at least one adjustable filter coefficient may be first adjusted in response to the signal error output until a specified condition is met, then adjusted in response to the FEC output.