摘要:
Embodiments include a system for performing electronic dispersion compensation on an information-bearing signal transmitted over a communication channel. The system may include a channel identification module configured to receive a first digitized version of the information bearing signal and an equalized version of the information-bearing signal, and may be configured to determine an impulse response of the communication channel based thereon. The system may include a time varying phase detector configured to receive the equalized version of the information bearing signal, a second digitized version of the information-bearing signal, and the impulse response, and may be further configured to generate a reference wave based on the impulse response and the equalized version of the information-bearing signal. The time varying phase detector may be configured to generate a phase signal based on the reference wave and on an error signal determined from the reference wave and the second digitized version of the information-bearing signal.
摘要:
Communication device employing LDPC (Low Density Parity Check) coding with Reed-Solomon (RS) and/or binary product coding. An LDPC code is concatenated with a RS code or a binary product code (e.g., using row and column encoding of matrix formatted bits) thereby generating coded bits for use in generating a signal that is suitable to be launched into a communication channel. Various ECCs/FECs may be employed including a BCH (Bose and Ray-Chaudhuri, and Hocquenghem) code, a Reed-Solomon (RS) code, an LDPC (Low Density Parity Check) code, etc. and various implementations of cyclic redundancy check (CRC) may accompany the product coding and/or additional ECC/FEC employed. The redundancy of such coded signals as generated using the principles herein are in the range of approximately 20% thereby providing a significant amount of redundancy and a high coding gain. Soft decision decoding may be performed on such coded signal generated herein.
摘要:
Embodiments include a decision feedback equalizer (DFE) that includes a first comparator configured to receive as inputs a soft value and a first threshold, a second comparator configured to receive as inputs the soft value and a second threshold, a selector configured to select an output of either the first comparator or the second comparator as a DFE output based on one or more previous bits output by the selector; an error calculator configured to determine an error for the first comparator and the second comparator, and a threshold adjuster configured to adjust the first threshold and the second threshold, the first threshold and the second threshold each being a non-linear combination of one or more previous outputs of the selector.
摘要:
Improved high-speed adaptive equalization is presented that may involve converting an optical signal into an electrical signal and performing equalization by (i) filtering the electrical signal with an analog filter according to at least one filter coefficient to produce a filtered output, (ii) generating an error signal from the filtered output according to an error function, (iii) providing at least one control signal to the analog filter for adjusting the at least one filter coefficient, (iv) detecting a relationship between a change in the at least one filter coefficient and a change in the error signal, and (v) adjusting the at least one filter coefficient according to the relationship to minimize the error signal. The least one coefficient may comprise a plurality of coefficients, and the relationship may be a gradient estimate having multiple components, each determined by varying only one of the coefficients and detecting a resulting change in the error signal.
摘要:
A method and apparatus for eliminating dead zone in a phase locked loop with binary quantized detectors are described. Dead zone can be eliminated by changing the threshold used to quantize the cross point sample. A quantized cross point sample is integrated in order to set a new threshold. The integration may be performed during data transitions to eliminate threshold drift during long sequences where no transitions occur.
摘要:
Communication device employing binary product coding with selective additional cyclic redundancy check (CRC) therein. Product code encoding (e.g., employing row and column encoding of matrix formatted bits, selectively with interleaving and/or permutation of the bits therein) may be combined with additional error correction code (ECC) or forward error correction (FEC) coding thereby generating coded bits for use in generating a signal to be launched into a communication channel. Various ECCs/FECs may be employed including a BCH (Bose and Ray-Chaudhuri, and Hocquenghem) code, a Reed-Solomon (RS) code, an LDPC (Low Density Parity Check) code, etc. The redundancy of such coded signals as generated using the principles herein is in the range of approximately 7%, and hard decision decoding may be performed on such coded signals generated herein. In accordance with decoding such signals, various bit decisions (within certain iterations) may be selectively ignored and/or reverted back to previous bit decisions.
摘要:
Methods, apparatuses, and systems are presented for performing adaptive equalization involving receiving a signal originating from a channel associated with inter-symbol interference, filtering the signal using a filter having a plurality of adjustable tap weights to produce a filtered signal, and adaptively updating each of the plurality of adjustable tap weights to a new value to reduce effects of inter-symbol interference, wherein each of the plurality of adjustable tap weights is adaptively updated to take into account a constraint relating to a measure of error in the filtered signal and a constraint relating to group delay associated with the filter. Each of the plurality of adjustable tap weights may be adaptively updated to drive group delay associated with the filter toward a target group delay.
摘要:
Communication device employing binary product coding with selective additional cyclic redundancy check (CRC) therein. Product code encoding (e.g., employing row and column encoding of matrix formatted bits, selectively with interleaving and/or permutation of the bits therein) may be combined with additional error correction code (ECC) or forward error correction (FEC) coding thereby generating coded bits for use in generating a signal to be launched into a communication channel. Various ECCs/FECs may be employed including a BCH (Bose and Ray-Chaudhuri, and Hocquenghem) code, a Reed-Solomon (RS) code, an LDPC (Low Density Parity Check) code, etc. The redundancy of such coded signals as generated using the principles herein is in the range of approximately 7%, and hard decision decoding may be performed on such coded signals generated herein. In accordance with decoding such signals, various bit decisions (within certain iterations) may be selectively ignored and/or reverted back to previous bit decisions.
摘要:
A method and apparatus for improved high-speed adaptive equalization that may operate effectively even in systems experiencing severe interference by using one or more error generators and taking multiple samples across a bit interval. Advantageously, a preferred embodiment of the current invention may be deployed in a clockless configuration. Preferably, one or more controllable analog filters may be controlled by one or more microprocessors used to assess the error data from the error generators and to calculate the appropriate coefficients for the filters according to one or more error minimization algorithms. Preferably, the steps of sampling, assessment, calculation and coefficient setting may be done iteratively to converge to an optimum set of filter values and/or respond dynamically to signals with time-varying noise and interference characteristics.
摘要:
Method and system for a programmable analog tapped delay line filter are disclosed. One embodiment of the present invention is a programmable analog tapped delay line filter comprising an input line, an output line, and one or more gaincells or taps coupled between the input line and the output line. The input and output lines each comprises a cascade of one or more differential delay cells, and each of the one or more gaincells or taps corresponds to a tap weight or coefficient. Furthermore, the input and output lines are terminated in impedances and the filter produces one or more outputs.