摘要:
An example battery according to an embodiment of the present invention includes a positive electrode, a negative electrode, and an electrolyte. The positive electrode comprises a positive active material, and has a positive electrode area and a positive electrode capacity. The negative electrode comprises a negative active material, and has a negative electrode area and a negative electrode capacity. The battery has an electrode area ratio equal to the positive electrode area divided by the negative electrode area, and an electrode capacity ratio equal to the positive electrode capacity divided by the negative electrode capacity. In an example battery, the electrode area ratio is at least approximately one, and/or the electrode capacity ratio is at least approximately one.
摘要:
An example battery according to an embodiment of the present invention includes a positive electrode, a negative electrode, and an electrolyte. The positive electrode comprises a positive active material, and has a positive electrode area and a positive electrode capacity. The negative electrode comprises a negative active material, and has a negative electrode area and a negative electrode capacity. The battery has an electrode area ratio equal to the positive electrode area divided by the negative electrode area, and an electrode capacity ratio equal to the positive electrode capacity divided by the negative electrode capacity. In an example battery, the electrode area ratio is at least approximately one, and/or the electrode capacity ratio is at least approximately one.
摘要:
A lithium-ion battery comprises a negative electrode, a positive electrode, and an electrolyte including a molten salt. The positive electrode comprises an electroactive compound including phosphorus, oxygen, lithium, and at least one other metal or semi-metal. The combination of such electrode compositions and a molten salt electrolyte provides a battery with very high thermal stability. Other ions, such as alkal metal ions, may be used in place of lithium ions for applications in other battery technologies.
摘要:
A lithium-ion battery comprises a negative electrode, a positive electrode, and an electrolyte including a molten salt. The positive electrode comprises an electroactive compound including phosphorus, oxygen, lithium, and at least one other metal or semi-metal. The combination of such electrode compositions and a molten salt electrolyte provides a battery with very high thermal stability. Other ions, such as alkal metal ions, may be used in place of lithium ions for applications in other battery technologies.
摘要:
A battery, such as a lithium-ion battery, comprises a first electrode, a second electrode, a molten salt electrolyte, and an electron collector, associated with the first electrode, the electron collector comprising an electrically conducting film. The battery further includes a protection layer separating the electron collector and the first electrode, the protection layer comprising a carbon-containing material. The electron collector may be an electrically conducting material such as aluminum, aluminum alloy, copper, nickel, other metal (such as alloys), conducting polymer, and the like. In one example, the protection layer is a graphite layer. In other examples, the protection layer may be a fullerene film, carbon nanotube film, or other carbon-containing material.
摘要:
A battery, such as a lithium-ion battery, comprises a first electrode, a second electrode, a molten salt electrolyte, and an electron collector, associated with the first electrode, the electron collector comprising an electrically conducting film. The battery further includes a protection layer separating the electron collector and the first electrode, the protection layer comprising a carbon-containing material. The electron collector may be an electrically conducting material such as aluminum, aluminum alloy, copper, nickel, other metal (such as alloys), conducting polymer, and the like. In one example, the protection layer is a graphite layer. In other examples, the protection layer may be a fullerene film, carbon nanotube film, or other carbon-containing material.
摘要:
The present invention relates to polymeric binders of formula: [(—CH2CF2—)x′(—CF2CF2—)y′[—CH2CH(R)—]z′]m wherein: x′+y′+z′=1, only one x′, y′ or z′ could be simultaneously equal to zero; R is an alkyl radical CnH2n+1— with 0≦n≦8, 10≦m≦106.
摘要:
One illustrative embodiment includes materials and devices including an integrated hydrogen storage structure including a plurality of continuously connected thermally conductive elongated members, the elongated members including continuously connected openings between the elongated members; and, a metal hydride material contacting the elongated members and disposed within the connected openings and surrounding the elongated members.
摘要:
A hydrogen storage material has been developed that comprises a metal hydride material embedded into a carbon microstructure that generally exhibits a greater bulk thermal conductivity than the surrounding bulk metal hydride material.
摘要:
Both the reaction of hydride-forming compositions with hydrogen to form hydrides, and the decomposition of such hydrides to release hydrogen may be promoted electrochemically. These reactions may be conducted reversibly, and if performed in a suitable cell, the cell will serve as a hydrogen storage and release device.