摘要:
In the process for the production of liquid pig iron 943) or liquid steel pre-products from charging substances comprising iron ore (5) and fluxes and at least partially containing a portion of fines, the iron ore is directly reduced to sponge iron in at least two reduction stages (1, 2) by the fluidized bed method, the sponge iron is melted in a melt-down gasifying zone (39) under the supply of carbon carriers and an oxygen-containing gas, and a CO- and H2-containing reducing gas is produced which is injected into reduction zones of the reduction stages (1, 2), is reacted there, is withdrawn as a top gas and optionally is supplied to a consumer. To achieve uniform reduction of the iron ore at optimum exploitation of the reducing gas, the iron ore (5) in a first reduction stage (1) by aid of the reducing gas is fractionated into at least two fractions having different grain size distributions each, each fraction is reduced by the reducing gas in a separate fluidized bed (6, 15), wherein the reducing gas maintains a first fluidized bed (6) containing the coarse-grain fraction and separates the fine-grain fraction from the same, and wherein, further, reducing gas is additionally introduced into the further fluidized bed (15) directly reduced iron ore (5) is discharged both from the first and from the further fluidized bed (6, 15) and the fine- and the coarse-grain fraction reduced in the first reduction stage (1) are further reduced in at least one further reduction stage (2) operating in the same manner as the first reduction stage (1) and from the last reduction stage (2) the fine-grain fraction is introduced into the melt-down gasifying zone (39) while being agglomerated by provision of oxygen, and the coarse-grain fraction is fed directly into the melt-down gasifying zone (39) gravitationally (FIG. 1).
摘要:
In the process for the production of liquid pig iron 943) or liquid steel pre-products from charging substances comprising iron ore (5) and fluxes and at least partially containing a portion of fines, the iron ore is directly reduced to sponge iron in at least two reduction stages (1, 2) by the fluidized bed method, the sponge iron is melted in a melt-down gasifying zone (39) under the supply of carbon carriers and an oxygen-containing gas, and a CO- and H2-containing reducing gas is produced which is injected into reduction zones of the reduction stages (1, 2), is reacted there, is withdrawn as a top gas and optionally is supplied to a consumer. To achieve uniform reduction of the iron ore at optimum exploitation of the reducing gas, the iron ore (5) in a first reduction stage (1) by aid of the reducing gas is fractionated into at least two fractions having different grain size distributions each, each fraction is reduced by the reducing gas in a separate fluidized bed (6, 15), wherein the reducing gas maintains a first fluidized bed (6) containing the coarse-grain fraction and separates the fine-grain fraction from the same, and wherein, further, reducing gas is additionally introduced into the further fluidized bed (15) directly reduced iron ore (5) is discharged both from the first and from the further fluidized bed (6, 15) and the fine- and the coarse-grain fraction reduced in the first reduction stage (1) are further reduced in at least one further reduction stage (2) operating in the same manner as the first reduction stage (1) and from the last reduction stage (2) the fine-grain fraction is introduced into the melt-down gasifying zone (39) while being agglomerated by provision of oxygen, and the coarse-grain fraction is fed directly into the melt-down gasifying zone (39) gravitationally (FIG. 1).
摘要:
In a process for the reduction of fine ore by reducing gas in the fluidized bed method, the following characteristic features are realized in order to achieve a uniform and even degree of metallization at optimum utilization of the reducing gas and while minimizing the amount of reducing gas employed, that the fine ore is fractionated by aid of the reducing gas into at least two fractions having different grain size distributions, that each fraction is reduced by the reducing gas in a separate fluidized bed, wherein the reducing gas maintains a first fluidized bed containing the coarse-grain fraction and separates the fine-grain fraction from the same, is accelerated together with the fine-grain fraction, subsequently under pressure release forms a further fluidized bed, into which it is continuously injected in a radially symmetrical manner and from below, and wherein, furthermore, secondary reducing gas additionally is directly injected into the further fluidized bed in a radially symmetrical manner, and that reduced ore is discharged from both the first and the second fluidized beds.
摘要:
In a method for treating particulate material in the fluidized bed method, the particulate material is maintained in a fluidized bed by a treating gas flowing from bottom to top and thereby is treated. To minimize the consumption of treating gas and to reduce entrainment of fine particles by the treating gas, a particulate material having a wide grain distribution and a relatively high portion of fines is used for treatment and the treating gas in the fluidized bed is maintained at a superficial velocity less than the velocity required for fluidizing the largest particles of said particulate material.
摘要:
In a process for the production of molten pig iron or steel pre-products from fine-particulate iron-cintaining material, in a meltdown-gasifying zone of a melter gasifier (1), under the supply of carbon-containing material and oxygen-containing gas at the simultaneous formation of a reducing gas, in a bed formed of sold carbon carriers, the iron-containing material is melted when passing the bed. To be able to employ a charge here up to 100% of which consist of fine ore, while reliably avoiding discharge of the supplied fine ore, a high-temperature combustion and/or gasification xzone is formed by combusting and/or gasifying carbon-containing material under direct supply of oxygen in a killing space (III) formed above the bed, into which high-temperature combustion and/or gasification zone the fine-particulate iron-containing material is directly introduced, wherein at least incipient surface melting of the iron-containing material and agglomeration of the same are carried out by means of the heat released during the reaction of the carbon-containing material.
摘要:
In a process for producing molten pig iron or steel preproducts from fine-particulate iron containing material in a meltdown gasifying zone of a melter gasifier, under the supply of carbon-containing material and oxygen-containing gas at the simultaneous formation of a reducing gas in a bed formed of solid carbon carriers, the iron-containing material is melted when passing the bed. In order to be able to work with a charge consisting of fine ore by up to 100%, yet reliably avoid discharging of the fine ore supplied, a supply duct for fine-particulate coal, such as coal dust and/or other carbon-containing materials including volatile portions, and a duct feeding an oxygen-containing gas enter in the vicinity of the reducing-gas discharge duct of the melter gasifier, the fine-particulate coal and/or other carbon-containing materials including volatile portions are reacted to fine-particulate coke upon introduction into the melter gasifier, the fine-particulate coke is discharged along with the reducing gas carried off the melter gasifier and is separated in a separating means.
摘要:
A process for producing sponge iron by directly reducing particulate, iron-oxide-containing material, wherein reducing gas that is formed from carbon carriers and an oxygen-containing gas in a melt-down gasifying zone is introduced into a reduction zone that contains the iron-oxide-containing material, characterized by the combination of the following characteristic features: (i) to the reduction zone, a reducing gas is fed which contains between iron-oxide-containing material 20 g and 100 g per Nm.sup.3 of a dust having a carbon content of between 30 mass % and 70 mass %; and (ii) the iron-oxide-containing material is exposed to the reducing gas for a time period that exceeds the period for a complete reduction. The process of the invention renders it possible to produce a sponge iron of elevated carbon content.
摘要:
In a process for producing molten pig iron or liquid steel pre-products, from particulate iron-oxide-containing material by fluidization, the iron-oxide-containing material is prereduced in at least one prereduction stage (7) by aid of a reducing gas and subsequently is reduced to sponge iron in a final reduction stage (8), the sponge iron is melted in a meltdown-gasifying zone (11) under the supply of carbon carriers and an oxygen-containing gas, and a CO- and H.sub.2 -containing reducing gas is produced which is introduced into the final reduction stage (8), is reacted there, is drawn off, subsequently is introduced into a prereduction stage (7), is reacted there, is drawn off, subjected to scrubbing and subsequently is carried off as an export gas and wherein at least a portion of the reacted reducing gas is purified from CO.sub.2, is heated and is used as a recycle-reducing gas for the reduction of the iron-oxide-containing material. To ensure reduction while avoiding the occurrence of "sticking", while also minimizing the amount of carbon carriers charged, a portion of the reducing gas flowing from the final reduction stage (8) into the prereduction stage (7) is branched off, washed, purified from CO.sub.2 and heated and subsequently is recycled to the final reduction stage (8) (FIG. 1).
摘要:
A direct reduction process is disclosed for iron-oxide-containing materials. Synthesis gas is mixed with top gas produced during direct reduction of the iron-oxide-containing materials and is used as reduction gas for directly reducing iron-oxide-containing materials. In order to avoid or reduce metal dusting caused by an increased CO content of the reduction gas with a simple technique and equipment, the CO/CO.sub.2 ratio of the reduction gas is set at a predetermined value from 1 to 3.
摘要:
The invention relates to a method for separating impurities out of slags, dusts, minerals, preparation residues of minerals or of recyclings or remaining substances, subsequently called feed stock. In order to save energy and reduce costs, the inventive method is characterized by the combination of the following features: melting the feed stock containing the impurities; forming a copper melt; bring the feed stock into contact with the copper melt while adding reducing agents, preferably coke and/or coal; vaporizing, if required, existing volatile compounds such as metal chlorides; reducing metals of the feed stock more noble than copper in the copper melt, and; forming a slag with constituents of the feed stock to be purified that is less noble than copper.