摘要:
An embodiment of the invention is directed to a microfabricated, silicon-based, Convection Enhanced Delivery (CED) device. The device comprises a silicon shank portion, at least one individual parylene channel disposed along at least a part of an entire length of the shank, wherein the channel has one or more dimensioned fluid exit ports disposed at one or more respective locations of the channel and a fluid (drug) input opening. The fluid input opening may be configured or adapted to be connected to a fluid reservoir and/or a pump and/or a meter and/or a valve or other suitable control device(s) or apparatus that supplies and/or delivers fluid (e.g., a drug) to the microfabricated device. The device may have multiple channels disposed side by side or in different surfaces of the device. The device may be rigid, or flexible, in which case a flexible device can be attached to a bio-degradable support scaffold that provides sufficient structural rigidity for insertion of the device into the target tissue. In certain “functionalized” embodiments of the invention, the CED device is equipped with integrated electrodes and/or a sensor (e.g., glutamate) to detect and convey selective parametric information. Another embodiment of the invention is directed to a CED method for drugs and/or other agents. The method may comprise the delivery of enzymes or other materials to modify tissue permeability and improve drug diffusion. Another embodiment of the invention is directed to a method for making a device for CED of drugs.
摘要:
An embodiment of the invention is directed to a microfabricated, silicon-based, Convection Enhanced Delivery (CED) device. The device comprises a silicon shank portion, at least one individual parylene channel disposed along at least a part of an entire length of the shank, wherein the channel has one or more dimensioned fluid exit ports disposed at one or more respective locations of the channel and a fluid (drug) input opening. The fluid input opening may be configured or adapted to be connected to a fluid reservoir and/or a pump and/or a meter and/or a valve or other suitable control device(s) or apparatus that supplies and/or delivers fluid (e.g., a drug) to the microfabricated device. The device may have multiple channels disposed side by side or in different surfaces of the device. The device may be rigid, or flexible, in which case a flexible device can be attached to a bio-degradable support scaffold that provides sufficient structural rigidity for insertion of the device into the target tissue. In certain “functionalized” embodiments of the invention, the CED device is equipped with integrated electrodes and/or a sensor (e.g., glutamate) to detect and convey selective parametric information. Another embodiment of the invention is directed to a CED method for drugs and/or other agents. The method may comprise the delivery of enzymes or other materials to modify tissue permeability and improve drug diffusion. Another embodiment of the invention is directed to a method for making a device for CED of drugs.
摘要:
An embodiment of the invention is directed to a microfabricated, silicon-based, Convection Enhanced Delivery (CED) device. The device comprises a silicon shank portion, at least one individual parylene channel disposed along at least a part of an entire length of the shank, wherein the channel has one or more dimensioned fluid exit ports disposed at one or more respective locations of the channel and a fluid (drug) input opening. The fluid input opening may be configured or adapted to be connected to a fluid reservoir and/or a pump and/or a meter and/or a valve or other suitable control device(s) or apparatus that supplies and/or delivers fluid (eg, a drug) to the microfabricated device. The device may have multiple channels disposed side by side or in different surfaces of the device.
摘要:
Polymeric drug conjugates in controlled release matrices are provided which allow sustained concentrations of therapeutic agents within a treated area for a prolonged period. The polymeric drug conjugates hydrolytically degrade in the extracellular space in a controlled, pre-specified pattern, releasing active drug. The conjugates diffuse within the tissue reaching a greater distance from the matrix than free drug would, because of their reduced rate of clearance from the tissue via the capillary system.
摘要:
Polymeric nanoparticles encapsulating inhibitory ribonucleic acids (RNAs) and methods of their manufacture and use are provided. Advantageous properties of the nanoparticles include: 1) high encapsulation efficiency of inhibitory RNAs into the nanoparticles, 2) small size of the nanoparticles that increases cell internalization, and 3) sustained release of encapsulated inhibitory RNAs by the nanoparticles that allows for administration of an effective amount of inhibitory RNAs to cells or tissues over extended periods of time. Encapsulation efficiency of inhibitory RNAs into the nanoparticles is greatly increased by complexing the inhibitory RNAs to polycations prior to encapsulation. Methods of using the polymeric nanoparticles for treating or inhibiting diseases or disorders are provided.
摘要:
The present invention provides a method for enhancing the delivery of nucleic acid molecules to cells by increasing the concentration of cells at the cell surface. The method comprises the step of premixing of nucleic acid:vector molecules with nanoparticles that are biocompatible, reversibly associate with the nucleic acids and have a sedimentation rate which increases the concentration of the nucleic acids at the cell surface so as to enhance delivery into the cells.