摘要:
A universal plug and play (UPnP) device makes itself known through a set of processes—discovery, description, control, eventing, and presentation. Following discovery of a UPnP device, an entity can learn more about the device and its capabilities by retrieving the device's description. The description includes vendor-specific manufacturer information like the model name and number, serial number, manufacturer name, URLs to vendor-specific Web sites, etc. The description also includes a list of any embedded devices or services, as well as URLs for control, eventing, and presentation. The description is written by a vendor, and is usually based on a device template produced by a UPnP forum working committee. The template is derived from a template language that is used to define elements to describe the device and any services supported by the device. The template language is written using an XML-based syntax that organizes and structures the elements.
摘要:
A device control model provides an integrated set of addressing, naming, discovery and description processes that enables automatic, dynamic and ad-hoc self-setup by devices to interoperate with other devices on a network. This permits a computing device when introduced into a network to automatically configure so as to connect and interact with other computing devices available on the network, without a user installation experience and without downloading driver software or persisting a configuration setup for connecting and interacting with such other computing devices. Upon completing interaction with such other devices, the computing device automatically releases the setup for such other devices so as to avoid persistent device configurations that might create a configuration maintenance and management burden.
摘要:
A general programmatic interface-to-network messaging adapter exposes a suitable object integration interface or application programming interface to applications on a controller device and sends network data messages to invoke services or query status of a controlled device. The adapter maps application calls to the interface into network data messages according to service protocols of the controlled device. The general adapter provides the interface suitable to any specific service of a controlled device based on a data description of the interface, and converts the application calls to network data messages based on a data description of a protocol and format for network data messages to interact with the specific service. Once the interface/messaging description is obtained, applications on the controller device can programmatically interact with the adapter, and the adapter then handles appropriate message exchanges with the service of the controlled device. The general adapter allows controller device applications to be written using object-oriented programming, while avoiding code download.
摘要:
A device hosting framework provides hosting for software-implemented logical devices (including peripheral devices bridges) on a computer to expose their services as controlled devices per a peer networking protocol. The device hosting framework encapsulates discovery, description and control protocol operations of the peer networking protocol, which frees the developers of the hosted devices from having to individually implement the peer networking protocol in the hosted devices' software and need implement only the core functionality of the hosted device. The device hosting framework operates as a host supporting device interoperability via the peer networking protocol for multiple hosted devices.
摘要:
A device hosting framework provides hosting for software-implemented logical devices (including peripheral devices bridges) on a computer to expose their services as controlled devices per a peer networking protocol. The device hosting framework encapsulates discovery, description and control protocol operations of the peer networking protocol, which frees the developers of the hosted devices from having to individually implement the peer networking protocol in the hosted devices' software and need implement only the core functionality of the hosted device. The device hosting framework operates as a host supporting device interoperability via the peer networking protocol for multiple hosted devices.
摘要:
A device hosting framework provides hosting for software-implemented logical devices (including peripheral devices bridges) on a computer to expose their services as controlled devices per a peer networking protocol. The device hosting framework encapsulates discovery, description and control protocol operations of the peer networking protocol, which frees the developers of the hosted devices from having to individually implement the peer networking protocol in the hosted devices' software and need implement only the core functionality of the hosted device. The device hosting framework operates as a host supporting device interoperability via the peer networking protocol for multiple hosted devices.
摘要:
A device hosting framework provides hosting for software-implemented logical devices (including peripheral devices bridges) on a computer to expose their services as controlled devices per a peer networking protocol. The device hosting framework encapsulates discovery, description and control protocol operations of the peer networking protocol, which frees the developers of the hosted devices from having to individually implement the peer networking protocol in the hosted devices' software and need implement only the core functionality of the hosted device. The device hosting framework operates as a host supporting device interoperability via the peer networking protocol for multiple hosted devices.
摘要:
Systems and methods for metering execution of code at runtime are described. According to one implementation, a call is received requesting execution of a protected service. In response, permission is requested for the execution. The request for permission is analyzed. A grant of permission is based on the analysis.
摘要:
A self-installing and configuring peer networking-to-host/peripheral connectivity adapter, such as a set of software modules running on a host, operates to convert between a device control protocol with peer networking connectivity and a host/peripheral connectivity protocol for a set of host-connected peripheral devices. The adapter is automatically installed on the host upon connecting a new peripheral device, such as by a plug-and-play operating system of the host. The adapter operates as a peer-networking addressable controlled device module, which responds to communication in the device control protocol from other peer devices that are networked with the host. The adapter converts the device control protocol communications from the peer devices into a host/peripheral protocol for controlling the peripheral devices. The peripheral devices thereby are controllable as peer networking devices via the peer networking connectivity device control protocol.
摘要:
Clients may subscribe to resources for the purpose of receiving notifications of changes in the resource (e.g., a file is added to a shared folder). Storing subscriptions within persistent storage provides data security in the event of a service failure, at the cost of high latency in accessing subscription data. An efficient method for tracking a resource is provided herein. A subscription service creates subscriptions and monitors resources for a client. Upon a subscribed resource change, a notification service stores a notification of the change into a queue associated with the client. Efficient resource tracking is achieved because notification and subscription data is stored in low latency soft memory. The notification service is configured to detect a failure in the notification service and/or subscription service. In the event a service fails, the client provides a recovery mechanism by resubscribing to resources the client is interested in.