摘要:
A method of fabricating a nonvolatile memory device having a first conductivity type substrate, includes the steps of forming a gate insulating layer on the entire surface of the semiconductor substrate, forming a plurality of floating gate lines on the gate insulating layer, forming first sidewall spacers on both sides of each floating gate, forming a plurality of impurity regions having a second conductivity type in the substrate between the floating gate lines, forming a dielectric layer on the floating gate lines, forming a plurality of control gate lines on the dielectric layer, forming second sidewall spacers on both sides of the control gate lines, selectively etching the dielectric layer and the floating gate lines to form a plurality of floating gates, forming tunneling insulating layers on both sides of the floating gates, and forming a plurality of program lines between the impurity regions.
摘要:
A method of fabricating a nonvolatile memory device having a substrate, includes the steps of forming a plurality of bit lines in the substrate, forming a plurality of field oxide layers on the substrate perpendicular to the bit lines, forming a gate insulating layer on an entire surface of the substrate including the bit lines and the field oxide layers, forming a plurality of floating lines on the gate insulating layer between the bit lines, forming a dielectric layer on the entire surface of the semiconductor substrate including the floating line's and the gate insulating layer, forming a plurality of word lines between the field oxide layer perpendicular to the bit lines, forming sidewall spacer at both sides of the word lines, selectively removing the dielectric layer and the floating lines using the word lines and the sidewall spacer as masks to form a plurality of floating gates, forming a tunneling layer at both sides of the floating gates, and forming a plurality of program lines between the bit lines.
摘要:
A method is provided for fabricating a nonvolatile memory device having a simple stacked stricture with program gates. The method includes forming bitlines of second conductivity type along a first direction separated by a first prescribed distance in a substrate of a first conductivity type and forming first lines on the substrate along a second direction separated from one another by a second prescribed distance. The second direction is substantially perpendicular to the first direction, and the first lines include a first conductive layer on an isolating layer. A gate insulating layer is formed on the substrate and a tunneling insulating layer on the first conductive lines and a second conductive layer is formed on the entire surface. The second conductive layer, the tunneling insulating layer, and the first conductive lines are selectively removed to form second conductive lines along the first direction and program gates. A dielectric film is formed on the second conductive lines and a third conductive layer and an insulating layer are formed on the entire surface. The insulating layer, the third conductive layer, the dielectric film, and the second conductive lines are selectively removed to form word lines in the second direction and floating gates between the first conductive lines. Insulating sidewall spacers are formed on both sides of the patterned insulating layer, the word lines, the dielectric film, and the floating gates and contact holes are formed in the tunneling insulating layer. Then, program lines are formed coupled to the program gates through the contact holes.
摘要:
A non-volatile memory device and a method of fabricating the same are disclosed. The non-volatile memory device includes a semiconductor substrate having a first conductive type, a plurality of first, second and third impurity regions having a second conductive type in the substrate, a plurality of first insulating layer only on the substrate between the second and third impurity regions, a second insulating layer on the substrate except on the first insulating layer formed, a plurality of floating gate on the first and second insulating layers, a plurality of dielectric layer on the floating gate, a plurality of control gate on the dielectric layer.
摘要:
An erase verifying apparatus includes: a memory cell array including a plurality of main areas and redundant areas having one or more cells, the main areas and redundant areas forming an erase block, a wordline circuit for controlling wordlines in the memory cell array, a redundancy control unit for storing redundancy information, a data buffer for loading replacement information from the redundancy control unit, a column selector for selecting a column in the memory cell array, a sense amplifier for sensing an output from the selected cell, and a controller for controlling all operations, and an erase verifying method includes the steps of: initializing the data buffer, loading the redundancy information stored in the redundancy control unit to the data buffer, selecting a certain erase block and erasing the cell data of the selected erase block by using the wordline circuit, selecting the cells of the selected erase block sequentially, checking whether the cell of the data buffer corresponding to the selected cell is replaced by the redundancy, and checking the output from the sense amplifier when the cell of the data buffer is not replaced by the redundancy.
摘要:
A charge gain stress test circuit for a nonvolatile memory and a test method using the same according to the present invention allow a maximum size of a voltage used for a stress lower than a voltage applied in a normal operation. The preferred embodiment sufficiently increases an absolute value of an applicable stress voltage by using a reference current to control a stress voltage value without burdening the peripheral circuits. The preferred embodiment optimizes a stress time, namely the test time.
摘要:
A charge gain stress test circuit for a nonvolatile memory and a test method using the same according to the present invention allow a maximum size of a voltage used for a stress lower than a voltage applied in a normal operation. The preferred embodiment sufficiently increases an absolute value of an applicable stress voltage by using a reference current to control a stress voltage value without burdening the peripheral circuits. The preferred embodiment optimizes a stress time, namely the test time.