摘要:
A pointing device such as an optical mouse is equipped with a top surface lift detection system that is able to provide lift detection whether the pointing device sits on a transparent structure or on an opaque structure. The top surface lift detection system relies on the separate detection of a light beam that reflects off the surface upon which the pointing device sits to detect lift whether the pointing devices sits on an opaque surface or a transparent surface.
摘要:
A pointing device such as an optical mouse is equipped with a top surface lift detection system that is able to provide lift detection whether the pointing device sits on a transparent structure or on an opaque structure. The top surface lift detection system relies on the separate detection of a light beam that reflects off the surface upon which the pointing device sits to detect lift whether the pointing devices sits on an opaque surface or a transparent surface.
摘要:
A finger navigation device is disclosed herein. An embodiment of the navigation device comprises a substrate; a light emitter located on the substrate; a photosensor located on the substrate; and a first cover located above the light emitter and the photosensor. The first cover has a first side and a second side, wherein the first side faces the substrate. A first lens is located in the first cover proximate the light emitter. An aperture is located in the first cover proximate the photosensor. A second cover faces the second side of the first cover and has a first surface proximate a transparent portion.
摘要:
An optical navigation device for operation in a surface navigation mode and a free space navigation mode. The optical navigation device includes a microcontroller, a first navigation sensor, and a second navigation sensor. The first navigation sensor is coupled to the microcontroller, and the second navigation sensor is coupled to the first navigation sensor. The microcontroller processes a movement of the optical navigation device. The first navigation sensor generates a first navigation signal in a first navigation mode. The second navigation sensor generates a second navigation signal in a second navigation mode and sends the second navigation signal to the first navigation sensor. By implementing a navigation sensor to process signals from multiple navigation sensors, the cost and size of the optical navigation device can be controlled, and a small packaging design can be used.
摘要:
An optical navigation device for operation in a surface navigation mode and a free space navigation mode is described. One embodiment of the optical navigation device includes a microcontroller, a surface navigation sensor, and a free space navigation sensor. The surface and free space navigation sensors are coupled to the microcontroller. The microcontroller is configured to process a movement of the optical navigation device. The surface navigation sensor is configured to generate a surface navigation signal in response to a surface navigation image. The free space navigation sensor is configured to generate a free space navigation signal in response to a free space navigation image. Embodiments of the optical navigation device facilitate an integrated optical solution to provide desktop navigation and scene navigation in a single optical navigation device.
摘要:
A device for detecting the presence of an object is provided. The device includes a light source, a current controller coupled to the light source, a sensor and a pattern detection engine. The current controller sets to provide the light source with a drive current having a pattern. The sensor is operable to receive light, notably light reflected from an object at the detection area and subsequently generates a signal in response to the light received. The pattern detection engine receives the signal from the sensor and subsequently reports the presence of the object upon determining the presence of the pattern in the signal. The object detection system is further configured to provide a navigation operation when an object is detected at the detection area.
摘要:
An optical navigation device for operation in a surface navigation mode and a free space navigation mode. The optical navigation device includes a microcontroller, a first navigation sensor, and a second navigation sensor. The first navigation sensor is coupled to the microcontroller, and the second navigation sensor is coupled to the first navigation sensor. The microcontroller processes a movement of the optical navigation device. The first navigation sensor generates a first navigation signal in a first navigation mode. The second navigation sensor generates a second navigation signal in a second navigation mode and sends the second navigation signal to the first navigation sensor. By implementing a navigation sensor to process signals from multiple navigation sensors, the cost and size of the optical navigation device can be controlled, and a small packaging design can be used.
摘要:
An integrated resolution switching surface detection system for an optical navigation device. The integrated resolution switching surface detection system includes a resolution switching engine, a surface detection engine, and a navigation engine. The resolution switching engine sets a resolution status based on a motion speed of a tracking surface relative to a navigation sensor, wherein the motion speed is a measure of motion data over time. The surface detection engine sets a surface detection status based on the resolution status that is set by the resolution engine. The navigation engine reads motion data from the navigation sensor and reports the motion data to a computing device according to the surface detection status that is set by the surface detection engine. Embodiments of the integrated resolution switching surface detection system maintain smooth and predictable cursor movement associated with a plurality of finger assert and finger de-assert events.
摘要:
An integrated resolution switching surface detection system for an optical navigation device. The integrated resolution switching surface detection system includes a resolution switching engine, a surface detection engine, and a navigation engine. The resolution switching engine sets a resolution status based on a motion speed of a tracking surface relative to a navigation sensor, wherein the motion speed is a measure of motion data over time. The surface detection engine sets a surface detection status based on the resolution status that is set by the resolution engine. The navigation engine reads motion data from the navigation sensor and reports the motion data to a computing device according to the surface detection status that is set by the surface detection engine. Embodiments of the integrated resolution switching surface detection system maintain smooth and predictable cursor movement associated with a plurality of finger assert and finger de-assert events.
摘要:
An optical navigation device for operation in a surface navigation mode and a free space navigation mode is described. One embodiment of the optical navigation device includes a microcontroller, a surface navigation sensor, and a free space navigation sensor. The surface and free space navigation sensors are coupled to the microcontroller. The microcontroller is configured to process a movement of the optical navigation device. The surface navigation sensor is configured to generate a surface navigation signal in response to a surface navigation image. The free space navigation sensor is configured to generate a free space navigation signal in response to a free space navigation image. Embodiments of the optical navigation device facilitate an integrated optical solution to provide desktop navigation and scene navigation in a single optical navigation device.