DECODING METHOD FOR TAIL-BITING CONVOLUTIONAL CODES USING A SEARCH DEPTH VITERBI ALGORITHM
    1.
    发明申请
    DECODING METHOD FOR TAIL-BITING CONVOLUTIONAL CODES USING A SEARCH DEPTH VITERBI ALGORITHM 有权
    使用搜索深度维特比算法解码转换代码的解码方法

    公开(公告)号:US20110060972A1

    公开(公告)日:2011-03-10

    申请号:US12945661

    申请日:2010-11-12

    IPC分类号: H03M13/23 G06F11/10 H03M13/41

    摘要: A method for decoding tail-biting convolutional codes. The method includes initializing a correction depth, selecting a first starting state from a set of encoding states, and initializing a metric value for the selected starting state as zero and the other states as infinity. The input bit stream is read and a Search Depth Viterbi algorithm (SDVA) is performed to determine path metrics and identify a minimum-metric path. The ending state for the minimum-metric path is determined and the output for this ending state is identified as “previous output.” A second starting state is set to the ending state of the minimum-metric path, and symbols equal to the correction depth from the previous output are read. The SDVA is performed on the second set of read symbols to generate a corrected output. A decoded output is generated by replacing symbols at the beginning of the previous output with the corrected output.

    摘要翻译: 一种用于解码尾巴卷积码的方法。 该方法包括初始化校正深度,从一组编码状态中选择第一起始状态,以及将所选择的起始状态的度量值初始化为零,将其他状态初始化为无穷大。 读取输入比特流,执行搜索深度维特比算法(SDVA)以确定路径度量并识别最小度量路径。 确定最小度量路径的结束状态,并将该结束状态的输出识别为“先前输出”。将第二起始状态设置为最小度量路径的结束状态,等于校正深度的符号 从以前的输出读取。 在第二组读符号上执行SDVA以产生校正输出。 通过使用校正输出替换先前输出开始处的符号来产生解码输出。

    Decoding method for tail-biting convolutional codes using a search depth viterbi algorithm
    2.
    发明授权
    Decoding method for tail-biting convolutional codes using a search depth viterbi algorithm 有权
    使用搜索深度维特比算法解码卷积码的解码方法

    公开(公告)号:US08136023B2

    公开(公告)日:2012-03-13

    申请号:US12945661

    申请日:2010-11-12

    IPC分类号: H03M13/03

    摘要: A method for decoding tail-biting convolutional codes. The method includes initializing a correction depth, selecting a first starting state from a set of encoding states, and initializing a metric value for the selected starting state as zero and the other states as infinity. The input bit stream is read and a Search Depth Viterbi algorithm (SDVA) is performed to determine path metrics and identify a minimum-metric path. The ending state for the minimum-metric path is determined and the output for this ending state is identified as “previous output.” A second starting state is set to the ending state of the minimum-metric path, and symbols equal to the correction depth from the previous output are read. The SDVA is performed on the second set of read symbols to generate a corrected output. A decoded output is generated by replacing symbols at the beginning of the previous output with the corrected output.

    摘要翻译: 一种用于解码尾巴卷积码的方法。 该方法包括初始化校正深度,从一组编码状态中选择第一起始状态,以及将所选择的起始状态的度量值初始化为零,将其他状态初始化为无穷大。 读取输入比特流,执行搜索深度维特比算法(SDVA)以确定路径度量并识别最小度量路径。 确定最小度量路径的结束状态,并将该结束状态的输出识别为“先前输出”。将第二起始状态设置为最小度量路径的结束状态,等于校正深度的符号 从以前的输出读取。 在第二组读符号上执行SDVA以产生校正输出。 通过使用校正输出替换先前输出开始处的符号来产生解码输出。

    Decoding method for tail-biting convolutional codes using a search depth viterbi algorithm
    3.
    发明授权
    Decoding method for tail-biting convolutional codes using a search depth viterbi algorithm 有权
    使用搜索深度维特比算法解码卷积码的解码方法

    公开(公告)号:US07856591B2

    公开(公告)日:2010-12-21

    申请号:US11687543

    申请日:2007-03-16

    IPC分类号: H03M13/03

    摘要: A method for decoding tail-biting convolutional codes. The method includes initializing a correction depth, selecting a first starting state from a set of encoding states, and initializing a metric value for the selected starting state as zero and the other states as infinity. The input bit stream is read and a Search Depth Viterbi algorithm (SDVA) is performed to determine path metrics and identify a minimum-metric path. The ending state for the minimum-metric path is determined and the output for this ending state is identified as “previous output.” A second starting state is set to the ending state of the minimum-metric path, and symbols equal to the correction depth from the previous output are read. The SDVA is performed on the second set of read symbols to generate a corrected output. A decoded output is generated by replacing symbols at the beginning of the previous output with the corrected output.

    摘要翻译: 一种用于解码尾巴卷积码的方法。 该方法包括初始化校正深度,从一组编码状态中选择第一起始状态,以及将所选择的起始状态的度量值初始化为零,将其他状态初始化为无穷大。 读取输入比特流,执行搜索深度维特比算法(SDVA)以确定路径度量并识别最小度量路径。 确定最小度量路径的结束状态,并将该结束状态的输出识别为“先前输出”。将第二起始状态设置为最小度量路径的结束状态,等于校正深度的符号 从以前的输出读取。 在第二组读符号上执行SDVA以产生校正输出。 通过使用校正输出替换先前输出开始处的符号来产生解码输出。

    Time and frequency synchronization method for OFDMA uplink receivers and base stations
    4.
    发明授权
    Time and frequency synchronization method for OFDMA uplink receivers and base stations 有权
    OFDMA上行接收机和基站的时频同步方法

    公开(公告)号:US08514774B2

    公开(公告)日:2013-08-20

    申请号:US11676914

    申请日:2007-02-20

    摘要: A method, and components for performing such method, is provided for synchronizing multiple user signals in a multi-user communication system. An interference matrix is generated based on time delay and frequency offset information for the active users accessing an OFDMA uplink receiver. User signals are received from the active users and are segmented into blocks, and the interference matrix is applied to each of the blocks. The received user signal is OFDM demodulated and un-used sub-carriers are discarded. Typically, the method includes also applying a factorization matrix formed by factoring a correction matrix created from the interference matrix and an inverse matrix formed based on the factoring results to the user signal blocks, e.g., the correction step includes multiplying each of the blocks from the user signal by each of these three matrices. The corrected user blocks are then concatenated to form a corrected vector signal.

    摘要翻译: 提供一种用于执行这种方法的方法和用于在多用户通信系统中同步多个用户信号的组件。 基于用于访问OFDMA上行链路接收机的活动用户的时间延迟和频率偏移信息生成干扰矩阵。 从活动用户接收用户信号,并将其分割为块,并且将干扰矩阵应用于每个块。 接收到的用户信号是OFDM解调的,未使用的子载波被丢弃。 通常,该方法还包括应用通过将从干扰矩阵产生的校正矩阵分解而形成的分解矩阵和基于因子分解结果形成的逆矩阵到用户信号块,例如,校正步骤包括将来自 用户信号通过这三个矩阵中的每一个。 校正的用户块然后被级联以形成校正的矢量信号。

    Low complexity decoding algorithm for tail-biting convolutional codes
    5.
    发明授权
    Low complexity decoding algorithm for tail-biting convolutional codes 有权
    用于尾部卷积码的低复杂度解码算法

    公开(公告)号:US08397148B2

    公开(公告)日:2013-03-12

    申请号:US13368190

    申请日:2012-02-07

    IPC分类号: H03M13/03

    摘要: A method for decoding tail-biting convolutional codes. The method includes initializing a correction depth, selecting a first starting state from a set of encoding states, and initializing a metric value for the selected starting state as zero and the other states as infinity. The input bit stream is read and a Search Depth Viterbi algorithm (SDVA) is performed to determine path metrics and identify a minimum-metric path. The ending state for the minimum-metric path is determined and the output for this ending state is identified as “previous output.” A second starting state is set to the ending state of the minimum-metric path, and symbols equal to the correction depth from the previous output are read. The SDVA is performed on the second set of read symbols to generate a corrected output. A decoded output is generated by replacing symbols at the beginning of the previous output with the corrected output.

    摘要翻译: 一种用于解码尾巴卷积码的方法。 该方法包括初始化校正深度,从一组编码状态中选择第一起始状态,以及将所选择的起始状态的度量值初始化为零,将其他状态初始化为无穷大。 读取输入比特流,执行搜索深度维特比算法(SDVA)以确定路径度量并识别最小度量路径。 确定最小度量路径的结束状态,将该结束状态的输出识别为先前的输出。 第二起始状态被设置为最小度量路径的结束状态,并且读取等于来自先前输出的校正深度的符号。 在第二组读符号上执行SDVA以产生校正输出。 通过使用校正输出替换先前输出开始处的符号来产生解码输出。

    TIME AND FREQUENCY SYNCHRONIZATION METHOD FOR OFDMA UPLINK RECEIVERS AND BASE STATIONS
    6.
    发明申请
    TIME AND FREQUENCY SYNCHRONIZATION METHOD FOR OFDMA UPLINK RECEIVERS AND BASE STATIONS 有权
    OFDMA上网接收者和基站的时间和频率同步方法

    公开(公告)号:US20070202903A1

    公开(公告)日:2007-08-30

    申请号:US11676914

    申请日:2007-02-20

    IPC分类号: H04B7/00

    摘要: A method, and components for performing such method, is provided for synchronizing multiple user signals in a multi-user communication system. An interference matrix is generated based on time delay and frequency offset information for the active users accessing an OFDMA uplink receiver. User signals are received from the active users and are segmented into blocks, and the interference matrix is applied to each of the blocks. The received user signal is OFDM demodulated and un-used sub-carriers are discarded. Typically, the method includes also applying a factorization matrix formed by factoring a correction matrix created from the interference matrix and an inverse matrix formed based on the factoring results to the user signal blocks, e.g., the correction step includes multiplying each of the blocks from the user signal by each of these three matrices. The corrected user blocks are then concatenated to form a corrected vector signal.

    摘要翻译: 提供一种用于执行这种方法的方法和用于在多用户通信系统中同步多个用户信号的组件。 基于用于访问OFDMA上行链路接收机的活动用户的时间延迟和频率偏移信息生成干扰矩阵。 从活动用户接收用户信号,并将其分割为块,并且将干扰矩阵应用于每个块。 接收到的用户信号是OFDM解调的,未使用的子载波被丢弃。 通常,该方法还包括应用通过将从干扰矩阵产生的校正矩阵分解而形成的分解矩阵和基于因子分解结果形成的逆矩阵到用户信号块,例如,校正步骤包括将来自 用户信号通过这三个矩阵中的每一个。 校正的用户块然后被级联以形成校正的矢量信号。

    Systems and methods for wireless signal configuration by a neural network

    公开(公告)号:US12021572B2

    公开(公告)日:2024-06-25

    申请号:US18080932

    申请日:2022-12-14

    摘要: A wireless network can generate candidate signal configurations for physical transmissions to or from a user equipment (UE) in a radio environment. The generation of candidate signal configurations can be performed using a first neural network that is associated with the UE. These signal configurations can then be evaluated using a second neural network that is associated with the radio environment. The second neural network can be trained using measurements from previous physical transmissions in the radio environment. The trained second neural network generates a reward value that is associated with the candidate signal configurations. The first neural network is then trained using the reward values from the second neural network to produce improved candidate signal configurations. When a signal configuration that produces a suitable reward value is generated, this signal configuration can be used for the physical transmission in the radio environment.

    Reduced-stage polar decoding
    8.
    发明授权

    公开(公告)号:US10447435B2

    公开(公告)日:2019-10-15

    申请号:US15651390

    申请日:2017-07-17

    申请人: Wuxian Shi Yiqun Ge

    发明人: Wuxian Shi Yiqun Ge

    摘要: In reduced-stage polar decoding, a received word that is based on an N-bit codeword of a polar code is decoded using fewer than log2N Log Likelihood Ratio (LLR) stages. Decoding uses a reduced stage decoding configuration. In an embodiment, such a configuration includes at least one higher-order LLR stage with nodes implementing functions that are based on a combination of lower-order polar code kernels.

    METHOD OF REDUCED STATE DECODING AND DECODER THEREOF
    9.
    发明申请
    METHOD OF REDUCED STATE DECODING AND DECODER THEREOF 审中-公开
    减少状态解码的方法及其解码器

    公开(公告)号:US20170019222A1

    公开(公告)日:2017-01-19

    申请号:US15203498

    申请日:2016-07-06

    申请人: Yiqun Ge Wuxian Shi

    发明人: Yiqun Ge Wuxian Shi

    IPC分类号: H04L5/00 H04B7/26

    CPC分类号: H04L5/0007 H04B7/2628

    摘要: Methods and devices are disclosed for receiving and decoding sparsely encoded data sequences using a message passing algorithm (MPA) or maximum likelihood sequence estimation (MLSE). Such data sequences may be used in wireless communications systems supporting multiple access, such as sparse code multiple access (SCMA) systems. The Methods and devices reduce the number of states in a search space for each received signal and associated function node based on a search threshold based on a characteristic related to the received signal and/or to a quality of a resource element over which the received signal is transmitted.

    摘要翻译: 公开了使用消息传递算法(MPA)或最大似然序列估计(MLSE)来接收和解码稀疏编码的数据序列的方法和装置。 这样的数据序列可以用于支持多个接入的无线通信系统,例如稀疏码多址(SCMA)系统。 方法和装置基于与接收信号相关的特征和/或资源元素的质量,基于搜索阈值来减少每个接收信号和相关联功能节点在搜索空间中的状态数量, 被传送。