Predicting the class of future customer calls in a call center
    1.
    发明授权
    Predicting the class of future customer calls in a call center 有权
    在呼叫中心预测未来客户呼叫的类别

    公开(公告)号:US09036806B1

    公开(公告)日:2015-05-19

    申请号:US14470186

    申请日:2014-08-27

    Abstract: A system and method for predicting the class of future customer calls to a call center. Saved call data is analyzed using a robust tokenizer of a computerized device. The tokenizer transforms a sequence of characters in a call summary field of the saved call data into a sequence of tokens. Tokenized call data is produced. Multiple maximum entropy (MaxEnt) models are created based on the tokenized call data, using the computerized device. The MaxEnt models produce a probability distribution of all classes for a next call to a call center. A conditional random field (CRF) classifier is trained with the MaxEnt models and information from the saved call data, using the computerized device. The CRF classifier uses chronologically ordered sequences of prior calls to the call center and predicts a class for a new call to the call center based on the saved call data. A call class prediction is produced for the new call received from a returning customer based on the CRF classifier and the MaxEnt model.

    Abstract translation: 一种用于预测未来客户呼叫到呼叫中心的类别的系统和方法。 使用计算机化设备的鲁棒标记器来分析保存的呼叫数据。 令牌器将保存的呼叫数据的调用摘要字段中的一系列字符转换成令牌序列。 产生令牌化呼叫数据。 使用计算机化设备,基于令牌化呼叫数据创建多个最大熵(MaxEnt)模型。 MaxEnt模型产生下一次呼叫呼叫中心的所有类的概率分布。 使用计算机化设备,使用MaxEnt模型和来自保存的呼叫数据的信息来训练条件随机场(CRF)分类器。 CRF分类器使用对呼叫中心的先前呼叫的按时间顺序排序的序列,并且基于保存的呼叫数据预测用于呼叫中心的新呼叫的类。 基于CRF分类器和MaxEnt模型,为从返回的客户接收的新呼叫生成呼叫类预测。

    Systems and methods for managing duplication of operations
    2.
    发明授权
    Systems and methods for managing duplication of operations 有权
    管理重复操作的系统和方法

    公开(公告)号:US09563409B2

    公开(公告)日:2017-02-07

    申请号:US13668772

    申请日:2012-11-05

    CPC classification number: G06F8/36 G06F17/30693

    Abstract: The present invention generally relates to systems and methods for executing scripts (a sequence of declarative operations) on large data sets. Some implementations store descriptions of previously-executed operations and associated input and output data sets. When executing similar operations on the same, a subset of, a superset of, or any fragment of data subsequently, some implementations detect duplication of operations and access previously-stored output data sets in order to re-use data and reduce the amount of execution, thus avoiding time-consuming duplicative computations.

    Abstract translation: 本发明一般涉及用于在大数据集上执行脚本(一系列声明性操作)的系统和方法。 一些实现存储先前执行的操作和关联的输入和输出数据集的描述。 当执行类似的操作时,随后的数据的超集或数据片段的一部分,一些实现检测重复的操作并访问先前存储的输出数据集,以便重新使用数据并减少执行量 ,从而避免耗时的重复计算。

    AUTOMATICALLY ENHANCED VISUAL PROCESS REPAIR USING PROCESS SUPERPOSITION AND UGLINESS INDICATORS
    3.
    发明申请
    AUTOMATICALLY ENHANCED VISUAL PROCESS REPAIR USING PROCESS SUPERPOSITION AND UGLINESS INDICATORS 有权
    自动增强视觉过程维修使用过程监控和无污染指标

    公开(公告)号:US20150294229A1

    公开(公告)日:2015-10-15

    申请号:US14252172

    申请日:2014-04-14

    Abstract: The present invention generally relates to systems and methods for visual process analysis. The disclosed techniques can include: obtaining a theoretical and an empirical process model, generating a theoretical process layout corresponding to the theoretical process model, where the theoretical process layout is generated using a layout algorithm, generating an empirical process layout corresponding to the empirical process model, where the empirical process layout is generated using the layout algorithm, superposing the empirical process layout onto the theoretical process layout, such that a superposition layout is generated, annotating the superposition layout based on ugliness indicators, such that an annotated superposition layout is generated, and causing the annotated superposition layout to be displayed.

    Abstract translation: 本发明一般涉及视觉过程分析的系统和方法。 所公开的技术可以包括:获得理论和经验过程模型,产生对应于理论过程模型的理论过程布局,其中使用布局算法生成理论过程布局,生成对应于经验过程模型的经验过程布局 ,其中使用布局算法生成经验过程布局,将经验过程布局叠加到理论过程布局上,使得生成叠加布局,基于丑恶指示符注释叠加布局,使得产生注释叠加布局, 并引起注释叠加布局的显示。

    SYSTEMS AND METHODS OF DATA ANALYTICS
    4.
    发明申请
    SYSTEMS AND METHODS OF DATA ANALYTICS 有权
    数据分析的系统和方法

    公开(公告)号:US20140337320A1

    公开(公告)日:2014-11-13

    申请号:US13893330

    申请日:2013-05-13

    CPC classification number: G06F17/30539 G06F17/30398

    Abstract: Systems and methods of data analytics, which in various embodiments enable business analysts to apply certain machine learning and analytics algorithms in a self-service manner by binding them to generic business questions that they can be used to answer in particular domains. The general approach may be to define the application of an algorithm to solve specific problems (questions) for particular combinations of a business domain and a data category. At design time, the algorithm may be linked to canonical data within a data category and programmed to run with this canonical data set. At runtime, given a dataset and its category, and a business domain, a user may choose from the corresponding questions and the system may run the algorithm bound to that question.

    Abstract translation: 数据分析的系统和方法,其在各种实施例中使得业务分析人员能够以自助服务的方式将某些机器学习和分析算法绑定到可以用于特定域中回答的通用业务问题。 一般方法可以是定义算法的应用以解决特定的业务领域和数据类别组合的问题(问题)。 在设计时,该算法可以链接到数据类别内的规范数据,并被编程为运行该规范数据集。 在运行时,给定数据集及其类别和业务域,用户可以从相应的问题中进行选择,并且系统可以运行绑定到该问题的算法。

    Multi-source contextual information item grouping for document analysis
    6.
    发明授权
    Multi-source contextual information item grouping for document analysis 有权
    用于文档分析的多源上下文信息项分组

    公开(公告)号:US09165053B2

    公开(公告)日:2015-10-20

    申请号:US13840186

    申请日:2013-03-15

    Abstract: A method and system for processing informational items originating from a plurality of information sources into a derived document for topical analysis thereof. Informational items are collated from a one of the sources in accordance with a predetermined plurality of relevant attributes and a key property value of common to select ones of the relevant attributes. Informational items are then grouped from the plurality of sources associated with the key common property value to form a document, wherein the informational items therein are marked on the informational source thereof. The document is then analyzed for topical identification.

    Abstract translation: 一种将源自多个信息源的信息项目处理为用于进行局部分析的导出文档的方法和系统。 信息项目根据预定的多个相关属性和一个共同的关键属性值从一个源对照以选择相关属性中的一个。 然后,从与密钥共同属性值相关联的多个源中分组信息项以形成文档,其中在其信息来源上标记其中的信息项。 然后分析该文件进行局部鉴定。

    SYSTEMS AND METHODS FOR MANAGING DUPLICATION OF OPERATIONS
    7.
    发明申请
    SYSTEMS AND METHODS FOR MANAGING DUPLICATION OF OPERATIONS 有权
    用于管理操作重复的系统和方法

    公开(公告)号:US20140129575A1

    公开(公告)日:2014-05-08

    申请号:US13668772

    申请日:2012-11-05

    CPC classification number: G06F8/36 G06F17/30693

    Abstract: The present invention generally relates to systems and methods for executing scripts (a sequence of declarative operations) on large data sets. Some implementations store descriptions of previously-executed operations and associated input and output data sets. When executing similar operations on the same, a subset of, a superset of, or any fragment of data subsequently, some implementations detect duplication of operations and access previously-stored output data sets in order to re-use data and reduce the amount of execution, thus avoiding time-consuming duplicative computations.

    Abstract translation: 本发明一般涉及用于在大数据集上执行脚本(一系列声明性操作)的系统和方法。 一些实现存储先前执行的操作和关联的输入和输出数据集的描述。 当执行类似的操作时,随后的数据的超集或数据片段的一部分,一些实现检测重复的操作并访问先前存储的输出数据集,以便重新使用数据并减少执行量 ,从而避免耗时的重复计算。

    METHODS AND SYSTEMS FOR AUTOMATED DATA CHARACTERIZATION AND EXTRACTION
    8.
    发明申请
    METHODS AND SYSTEMS FOR AUTOMATED DATA CHARACTERIZATION AND EXTRACTION 有权
    用于自动数据表征和提取的方法和系统

    公开(公告)号:US20160117387A1

    公开(公告)日:2016-04-28

    申请号:US14526109

    申请日:2014-10-28

    Abstract: A system and method for characterizing textual data by generating a first data abstraction based on a set of textual data. The first data abstraction can be presented to a user, and the user can provide instructions to make changes to the first data abstraction to generate a second data abstraction. The textual data can be extracted and characterized from the set of textual data using the second data abstraction.

    Abstract translation: 一种用于通过基于一组文本数据生成第一数据抽象来表征文本数据的系统和方法。 可以向用户呈现第一数据抽象,并且用户可以提供指令来对第一数据抽象进行更改以生成第二数据抽象。 可以使用第二数据抽象从文本数据集中提取和表征文本数据。

    Method for automated generation of minimal partitioning of a process specification for supporting its distributed execution
    9.
    发明授权
    Method for automated generation of minimal partitioning of a process specification for supporting its distributed execution 有权
    用于自动生成用于支持其分布式执行的过程规范的最小分区的方法

    公开(公告)号:US09055072B2

    公开(公告)日:2015-06-09

    申请号:US13860123

    申请日:2013-04-10

    CPC classification number: G06F9/5066

    Abstract: A process definition is partitioned for execution in a system architecture that enables the communication and meta-orchestration of multiple distributed engines. The partitioning method creates separate scripts for each group (execution engine, computer, distributed computer, etc.) where each script has the same representation as the original control flow, but keeps local services and replaces remote services with data flow messages and synchronization points. This method ensures that the resulting process has the same result as the original process executed with a single engine. Additional advantages include: the number of partitions of the process is minimized to equal to the number of distributed engines; the communication between engines is minimized to only data flow messages; there is no dependency on a specific process representation such as BPMN; and reduced implementation complexity.

    Abstract translation: 流程定义被划分为在能够进行多个分布式引擎的通信和元编排的系统架构中执行。 分区方法为每个组(执行引擎,计算机,分布式计算机等)创建单独的脚本,其中每个脚本具有与原始控制流相同的表示形式,但保留本地服务并用数据流消息和同步点替换远程服务。 该方法确保生成的过程与使用单个引擎执行的原始进程具有相同的结果。 其他优点包括:将进程的分区数量最小化为等于分布式引擎的数量; 发动机之间的通信被最小化为仅数据流消息; 没有依赖于特定的过程表示,例如BPMN; 并降低了实施复杂性。

    Systems and methods of data analytics
    10.
    发明授权
    Systems and methods of data analytics 有权
    数据分析的系统和方法

    公开(公告)号:US09378250B2

    公开(公告)日:2016-06-28

    申请号:US13893330

    申请日:2013-05-13

    CPC classification number: G06F17/30539 G06F17/30398

    Abstract: Systems and methods of data analytics, which in various embodiments enable business analysts to apply certain machine learning and analytics algorithms in a self-service manner by binding them to generic business questions that they can be used to answer in particular domains. The general approach may be to define the application of an algorithm to solve specific problems (questions) for particular combinations of a business domain and a data category. At design time, the algorithm may be linked to canonical data within a data category and programmed to run with this canonical data set. At runtime, given a dataset and its category, and a business domain, a user may choose from the corresponding questions and the system may run the algorithm bound to that question.

    Abstract translation: 数据分析的系统和方法,其在各种实施例中使得业务分析人员能够以自助服务的方式将某些机器学习和分析算法绑定到可以用于特定域中回答的通用业务问题。 一般方法可以是定义算法的应用以解决特定的业务领域和数据类别组合的问题(问题)。 在设计时,该算法可以链接到数据类别内的规范数据,并被编程为运行该规范数据集。 在运行时,给定数据集及其类别和业务域,用户可以从相应的问题中进行选择,并且系统可以运行绑定到该问题的算法。

Patent Agency Ranking