Abstract:
Methods herein form a photoresist on an exterior of a cylinder and expose the photoresist to a light source while rotating the cylinder. Such methods develop the photoresist, after exposing, to change the photoresist into a patterned protective layer on the exterior of the cylinder. Then, these methods pattern the exterior of the cylinder while rotating the cylinder using the patterned protective layer to produce a patterned cylinder.
Abstract:
An apparatus and a method for fabricating a magnetic material with variable magnetic alignment are disclosed. For example, the apparatus includes a reservoir storing magnetic particles, a heater coupled to the reservoir to melt the magnetic particles, a nozzle coupled to the reservoir to receive the magnetic particles that are melted, wherein the nozzle includes a rotatable collar that includes at least one magnet, a platform below the nozzle to receive the magnetic particles that are melted that are dispensed by the nozzle, and a controller communicatively coupled to the heater, the nozzle, and the platform to control operation of the heater, the nozzle, the rotatable collar of the nozzle, and the platform.
Abstract:
A three-dimensional (3D) printer includes a tool configured to extrude a material onto a surface to produce a 3D object. The 3D printer also includes a first movement device configured to move the tool in a first direction while the material is being extruded. The 3D printer also includes a first sensor configured to measure a first parameter of the first movement device as the first movement device moves the tool in the first direction.
Abstract:
A shaped ceramic or metallic object is formed by sectioning a model of a shaped body into 2-dimensional slices. For each slice, a toner material is electrostatically printed on a polymer sheet. The toner material includes solid particles. The printed sheets are assembled into a stack and the stack is depolymerized and sintered to form the ceramic object.
Abstract:
A three-dimensional (3D) printer includes a tool configured to extrude a material onto a surface to produce a 3D object. The printer also includes a first movement device configured to move the tool in a first direction. The printer also includes a first sensor configured to measure a first electrical parameter of the first movement device as the first movement device moves the tool in the first direction. A distance between the tool and the surface is varied in response to a comparison of the first electrical parameter and a first electrical parameter threshold of the first movement device.
Abstract:
An additive manufacturing system enables continual production of three-dimensional objects without operator intervention. The system is configured to form an object on a planar member, rotate the planar member 180° to enable gravity to move the object from the planar member to an object transport, which carries the object to a receptacle for storage and later processing. The opposite side of the planar member is then available for manufacture of another object and the planar member is again rotated following manufacture of the object so it can be removed and carried to the receptacle. The alternating formation of objects on opposite sides of the planar member continues until a predetermined number of objects has been made. The planar member can include one or more heaters to heat the surface on which an object is formed to facilitate release of the object once the planar member has been rotated.
Abstract:
The present teachings described a bias charging member and a method of manufacture. According to an embodiment, there is provided a bias charging member. The bias charging member includes an outer surface layer disposed on the conductive core. The outer surface layer includes silicone microspheres having an average size of from 1 micron to 15 microns present in an amount of from about 5 to about 40 weight percent of the outer layer.
Abstract:
An apparatus and a method for fabricating a magnetic material with variable magnetic alignment are disclosed. For example, the apparatus includes a reservoir storing magnetic particles, a heater coupled to the reservoir to melt the magnetic particles, a nozzle coupled to the reservoir to receive the magnetic particles that are melted, wherein the nozzle includes a rotatable collar that includes at least one magnet, a platform below the nozzle to receive the magnetic particles that are melted that are dispensed by the nozzle, and a controller communicatively coupled to the heater, the nozzle, and the platform to control operation of the heater, the nozzle, the rotatable collar of the nozzle, and the platform.
Abstract:
A three-dimensional (3D) printer includes a tool configured to extrude a material onto a surface to produce a 3D object. The 3D printer also includes a first movement device configured to move the tool in a first direction while the material is being extruded. The 3D printer also includes a first sensor configured to measure a first parameter of the first movement device as the first movement device moves the tool in the first direction.
Abstract:
A three-dimensional (3D) printer includes a tool configured to extrude a material onto a surface to produce a 3D object. The printer also includes a first movement device configured to move the tool in a first direction. The printer also includes a first sensor configured to measure a first electrical parameter of the first movement device as the first movement device moves the tool in the first direction. A distance between the tool and the surface is varied in response to a comparison of the first electrical parameter and a first electrical parameter threshold of the first movement device.