Abstract:
A detection-based segmentation-free method and system for license plate recognition. An image of a vehicle is initially captured utilizing an image-capturing unit. A license plate region is located in the image of the vehicle. A set of characters can then be detected in the license plate region and a geometry correction performed based on a location of the set of characters detected in the license plate region. An operation for sweeping an OCR across the license plate region can be performed to infer characters with respect to the set of characters and locations of the characters utilizing a hidden Markov model and leveraging anchored digit/character locations.
Abstract:
Methods and systems for localizing numbers and characters in captured images. A side image of a vehicle captured by one or more cameras can be preprocessed to determine a region of interest. A confidence value of series of windows within regions of interest of different sizes and aspect ratios containing a structure of interest can be calculated. Highest confidence candidate regions can then be identified with respect to the regions of interest and at least one region adjacent to the highest confidence candidate regions. An OCR operation can then be performed in the adjacent region. An identifier can then be returned from the adjacent region in order to localize numbers and characters in the side image of the vehicle.
Abstract:
A detection-based segmentation-free method and system for license plate recognition. An image of a vehicle is initially captured utilizing an image-capturing unit. A license plate region is located in the image of the vehicle. A set of characters can then be detected in the license plate region and a geometry correction performed based on a location of the set of characters detected in the license plate region. An operation for sweeping an OCR across the license plate region can be performed to infer characters with respect to the set of characters and locations of the characters utilizing a hidden Markov model and leveraging anchored digit/character locations.
Abstract:
A segmentation free method and system for automatic license plate recognition. An OCR classifier can be swept across an image of a license plate. Characters and their locations can be inferred with respect to the image of the license plate using probabilistic inference based on a Hidden Markov Model (HMM). A language model can be combined with a license plate candidate from the HMM to infer the optimal or best license plate code. The language model can be configured by employing a corpus of license plate codes, wherein the corpus includes a distribution representative of training sets and tests sets.
Abstract:
Methods and systems for recognizing a license plate character. Synthetic license plate character images are generated for a target jurisdiction. A limited set of license plate images can be captured for a target jurisdiction utilizing an image-capturing unit. The license plate images are then segmented into license plate character images for the target jurisdiction. The license plate character images collected for the target jurisdiction can be manually labeled. A domain adaptation technique can be utilized to reduce the divergence between synthetically generated and manually labeled target jurisdiction image sets. Additionally, OCR classifiers are trained utilizing the images after the domain adaptation method has been applied. One or more input license plate character images can then be received from the target jurisdiction. Finally, the trained OCR classifier can be employed to determine the most likely labeling for the character image and a confidence associated with the label.
Abstract:
Disclosed are methods and systems for monitoring and reporting road violations of vehicles sharing roads with responding emergency vehicles. According to an exemplary method video is captured from a forward and/or rear facing camera mounted to an emergency vehicle, and the video is processed to identify any vehicles in violation within a prescribed distance from the emergency vehicle. A license plate id of a vehicle determined to be in violation is identified and communicated to the appropriate authorities.
Abstract:
Methods and systems for improving automated license plate recognition performance. One or more images of a vehicle can be captured via an automated license plate recognition engine. Vehicle class information associated with the vehicle can be obtained using the automated license place recognition engine. Such vehicle class information can be analyzed with respect to the vehicle. Finally, data can be dynamically adjusted with respect to the vehicle based on a per image basis to enhance recognition of the vehicle via the automated license plate recognition engine.
Abstract:
Methods, systems and processor-readable media for providing a license plate overlay decal with an infrared readable annotation mark for an optical character recognition and segmentation. The annotation mark with respect to character image of a license plate can be designed by training an ALPR engine to improve automatic license plate recognition performance. A plate overlay decal can be rendered with the annotation mark and attached to a license plate. The annotation mark can also be directly placed on the license plate when the license plate is rendered. The annotation mark is visible when illuminated by an infrared light and the license plate appears normal in visible light. The annotation mark enables an ALPR imaging system to obtain more information for each character and utilize the information to improve conclusion accuracy.
Abstract:
Methods and systems for character segmentation in an automatic license plate recognition application. One or more images of a license plate are acquired. Then, a pixel-level importance may be calculated with respect to the image(s) of the license plate based on information within the image, such as gradient information and raw grayscale information. A seam selection can be then applied with respect to the pixel-level importance map and the image(s) by enforcing constraints based on known characteristics of license plates in order to provide for character segmentation with respect to the image(s) of the license plate.
Abstract:
Methods, systems, and processor-readable media for the detection and classification of license plates. In an example embodiment, an image of a vehicle can be captured with an image-capturing unit. A license plate region can then be located in the captured image of the vehicle by extracting a set of candidate regions from the image utilizing a weak classifier. A set of candidate regions can be ranked utilizing a secondary strong classifier. The captured image can then be classified according to a confidence driven classification based on classification criteria determined by the weak classifier and the secondary strong classifier.