Abstract:
A method, non-transitory computer readable medium, and apparatus for directing a vehicle in a side-by-side drive-thru are disclosed. For example, the method receives one or more video images of a side-by-side drive-thru comprising two or more lanes, detects a vehicle approaching an entrance of the side-by-side drive-thru, calculating an estimated order time for the vehicle and directs the vehicle to one of the two or more lanes based on the estimated order time for the vehicle or a previously estimated order time of each one of the a plurality of vehicles already in the first lane and the second lane of the drive-thru.
Abstract:
Video-based object tracking accuracy is improved by a tentative identification of objects to be tracked. An identified blob that does not encompass a previously established set of tracking features (“tracker”) triggers initialization of an infant tracker. If that tracker remains the only tracker or becomes the “oldest” tracker associated with a blob identified in subsequent video frames, the “age” of the tracker is increased. If, in subsequent frames, the tracker is encompassed by a blob that is associated with an “older” tracker, the “age” of the tracker is decreased. Infant trackers that reach or exceed a threshold “age” are promoted to adult status. Adult trackers can be processed as being associated with valid objects. Trackers established for blobs identified due to mask segmentation tend not to cause false object detections. When segmentation is corrected, blob segments are combined and redundant trackers for the associated object are demoted and ignored.
Abstract:
Methods, systems, and processor-readable media for data augmentation utilized in an automatic license plate recognition engine. A machine-readable code can be associated with an automatic license plate recognition engine. The machine-readable code can be configured to define parameters that drive processing within the automatic license plate recognition engine to produce recognition results thereof and enhance a machine readability of a license plate recognized and analyzed via the automatic license plate recognition engine.
Abstract:
Methods, systems and processor-readable media for determining, post training, which locations of a classifier window are most significant in discriminating between class and non-class objects. The important locations can be determined by calculating the mean and standard deviation of every pixel location in the classifier context for both the positive and negative samples of the classifier. Using a combination of t-scores and mean differences, the importance of all pixel locations in the classifier score can be rank ordered. A sufficient number of pixel locations can then be selected to achieve a detection rate close enough to the full classifier for a particular application.
Abstract:
Methods, systems, and processor-readable media for pruning a training dictionary for use in detecting anomalous events from surveillance video. Training samples can be received, which correspond to normal events. A dictionary can then be constructed, which includes two or more classes of normal events from the training samples. Sparse codes are then generated for selected training samples with respect to the dictionary derived from the two or more classes of normal events. The size of the dictionary can then be reduced by removing redundant dictionary columns from the dictionary via analysis of the sparse codes. The dictionary is then optimized to yield a low reconstruction error and a high-interclass discriminability.
Abstract:
Disclosed are methods and systems for monitoring and reporting road violations of vehicles sharing roads with responding emergency vehicles. According to an exemplary method video is captured from a forward and/or rear facing camera mounted to an emergency vehicle, and the video is processed to identify any vehicles in violation within a prescribed distance from the emergency vehicle. A license plate id of a vehicle determined to be in violation is identified and communicated to the appropriate authorities.
Abstract:
Methods and systems for achieving accurate segmentation of characters with respect to a license plate image utilizing a reinforcement learning approach. A vehicle image can be captured by an image capturing unit and processed utilizing an ALPR (Automatic License Plate Recognition) unit. The reinforcement learning (RL) approach can be configured to initialize a segmentation agent with a starting location. A proper segmentation path (cuts) from top to bottom and from a darker to lighter area in a cropped license plate image can be identified by the segmentation agent during a training phase. Rewards can be provided based on a number of good and bad moves. The association between a current state and a sensory input with a preferred action can be learned by the segmentation agent at the end of the training phase.
Abstract:
Methods and systems for automatically determining the issuing state of a license plate. An image of a license plate acquired by an ALPR engine can be processed via one or more OCR engines such that each OCR engine among the OCR engines is tuned to a particular state. Confidence data output from the OCR engine(s) can be analyzed (among other factors) to estimate the issuing state associated with the license plate. Multiple observations related to the issuing state can be merged to derive an overall conclusion and assign an associated confidence value with respect to the confidence data and determine a likely issuing state associated with the license plate.
Abstract:
Methods and systems for reducing the required footprint of SNoW-based classifiers via optimization of classifier features. A compression technique involves two training cycles. The first cycle proceeds normally and the classifier weights from this cycle are used to rank the Successive Mean Quantization Transform (SMQT) features using several criteria. The top N (out of 512 features) are then chosen and the training cycle is repeated using only the top N features. It has been found that OCR accuracy is maintained using only 60 out of 512 features leading to an 88% reduction in RAM utilization at runtime. This coupled with a packing of the weights from doubles to single byte integers added a further 8× reduction in RAM footprint or a reduction of 68× over the baseline SNoW method.
Abstract:
Methods and systems for improving automated license plate recognition performance. One or more images of a vehicle can be captured via an automated license plate recognition engine. Vehicle class information associated with the vehicle can be obtained using the automated license place recognition engine. Such vehicle class information can be analyzed with respect to the vehicle. Finally, data can be dynamically adjusted with respect to the vehicle based on a per image basis to enhance recognition of the vehicle via the automated license plate recognition engine.