Abstract:
The present invention generally relates to systems and methods for establishing trusted, secure communications from a mobile device, such as a smart phone, to an immobile device, such as a multi-function device. The disclosed techniques can include the immobile device displaying a pattern that encodes a cryptographic key. The mobile device can obtain an image of the pattern and decode it to obtain the cryptographic key. Because the mobile device obtained the image within its line-of-sight, for example, it can be assured that it communicated with the immobile device, and only the immobile device. The mobile device and the immobile device can use the cryptographic key to secure further communications.
Abstract:
A first printer acquires a first network address from an external server using unicast (non-broadcast) transmissions. Then, second printers and an external computerized device also acquire the first network address from the external server, similarly using unicast transmissions. The second printers contact (e.g., say “hello” to) the first printer using a peer-to-peer network. The external computerized device contacts (again using unicast transmissions) the first printer using the first network address to cause the first printer to transmit a list of the second printers that have contacted the first printer to the external computerized device. The external computerized device then contacts (again using unicast transmissions) the second printers using the list of contacted printers (which includes network address information of the second printers) to allow the external computerized device to configure the second printers.
Abstract:
A method of printing a document from a mobile device coupling the mobile device to a print device. The method may also include launching a tap-to-print application software on the mobile device in response to the coupling, identifying a document to be printed via the tap-to-print application, and transmitting the document to be printed to the print device by the tap-to-print application. The tap-to-print application does not modify an operating system of the mobile device.
Abstract:
Disclosed are systems and methods that provide authentication for printed and/or electronic versions of a document through the use of a document authentication device in the form of a computational tag configured for short-range wireless communication only. This document authentication device receives authentication information for a document from a computerized device over a wireless communication link and uses this authentication information to generate encoded data to be embedded in the document in order to establish the authenticity of the document by functioning as an imprimatur. Specifically, when embedded in the document, this encoded data can add a visible feature or non-visible feature that, upon inspection, establishes the authenticity of an electronic version of the document and/or can add a printable feature, which will be readable off a surface of a printed version of the document to establish the authenticity of that printed version.
Abstract:
The present invention generally relates to systems and methods for ensuring proximity between a first, e.g., mobile device, such as a smart phone, and a second, e.g., immobile device, such as a multi-function device. The invention can include the second device displaying a pattern that represents a series of movements, which a user of the first device can mimic. The first device can thus prove that it and its user are in proximity to the second device.
Abstract:
Methods and systems receive an electronic scanned image generated by activity of an application running on a portable computerized device, and calculate a cryptographic digest from data of the electronic scanned image using a second computerized device. Also, such methods and systems encrypt the cryptographic digest using an encryption key stored on the portable computerized device to create a content signature of the cryptographic digest, and send the content signature to the second computerized device. The authenticity of a copy of the electronic scanned image provided by the second computerized device is verified by recalculating the content signature (based on the copy of the electronic scanned image) using the encryption key from the portable device.
Abstract:
Systems and methods are disclosed for overriding a print ticket. An electronic document for printing on a target image output device is identified on a portable computing device. Printing and finishing instructions are selected, based on capabilities of the target device. A request to convert the electronic document to a printable format is transmitted to a separate document conversion service. The electronic document in the form of a printable document having a generic print ticket is received from the document conversion service. The generic print ticket is evaluated, based on the printing and finishing instructions selected for the target device. The generic print ticket is removed from the printable document and a corrected print ticket is produced based on the printing and finishing instructions selected for the target device. The corrected print ticket is injected into the printable document and transmitted from the portable computing device to the target device.
Abstract:
Disclosed are systems and methods that provide authentication for printed and/or electronic versions of a document through the use of a document authentication device in the form of a computational tag configured for short-range wireless communication only. This document authentication device receives authentication information for a document from a computerized device over a wireless communication link and uses this authentication information to generate encoded data to be embedded in the document in order to establish the authenticity of the document by functioning as an imprimatur. Specifically, when embedded in the document, this encoded data can add a visible feature or non-visible feature that, upon inspection, establishes the authenticity of an electronic version of the document and/or can add a printable feature, which will be readable off a surface of a printed version of the document to establish the authenticity of that printed version.
Abstract:
In implementations, a computer-implemented method for operating a multifunctional device (MFD) is disclosed. The computer-implemented method can include receiving a identification information from a tag that is associated with a MFD; identifying, by a processor, one or more operations based on the identification information that was received; and transmitting the one or more operations to the MFD.
Abstract:
The present invention generally relates to systems and methods for establishing trusted, secure communications from a mobile device, such as a smart phone, to an immobile device, such as a multi-function device. The disclosed techniques can include the immobile device displaying a pattern that encodes a cryptographic key. The mobile device can obtain an image of the pattern and decode it to obtain the cryptographic key. Because the mobile device obtained the image within its line-of-sight, for example, it can be assured that it communicated with the immobile device, and only the immobile device. The mobile device and the immobile device can use the cryptographic key to secure further communications.