Abstract:
The present invention generally relates to systems and methods for establishing trusted, secure communications from a mobile device, such as a smart phone, to an immobile device, such as a multi-function device. The disclosed techniques can include the immobile device displaying a pattern that encodes a cryptographic key. The mobile device can obtain an image of the pattern and decode it to obtain the cryptographic key. Because the mobile device obtained the image within its line-of-sight, for example, it can be assured that it communicated with the immobile device, and only the immobile device. The mobile device and the immobile device can use the cryptographic key to secure further communications.
Abstract:
Methods and systems detect a near field communication tap using a force detector of a portable computerized device, automatically sense current environmental conditions in response to the near field communication tap (using sensors of the portable computerized device) and automatically calculate a current location-based environmental signature based on the current environmental conditions sensed by the sensors, using a processor of the portable computerized device. Also, such methods and systems automatically match the current location-based environmental signature to a matching previously stored location-based environmental signature, using the processor and a communications device of the portable computing device. Such methods then automatically obtain a machine identification code associated with the matching previously stored location-based environmental signature from the non-transitory computer readable storage medium, using the processor and the communications device, and automatically process a workflow using the machine identification code and the processor.
Abstract:
A system and method for transmitting visual data by displaying a synchronization video that includes synchronization code sequences on a first device, capturing the synchronization video using a video camera of a second device, parsing and decoding the synchronization code sequences on the second device, displaying an indication of which of the synchronization code sequences are compatible for visual data transmission on the second device, receiving a selected synchronization code sequence of the synchronization code sequences on the first device, and displaying a data code sequence corresponding to the selected synchronization code sequence on the first device, wherein the data code sequence includes encoded data, and capturing and decoding the data code sequence on the second device.
Abstract:
In implementations, a computer-implemented method for operating a multifunctional device (MFD) is disclosed. The computer-implemented method can include receiving a identification information from a tag that is associated with a MFD; identifying, by a processor, one or more operations based on the identification information that was received; and transmitting the one or more operations to the MFD.
Abstract:
Systems and methods for verifying physical proximity to a network device are provided. The method includes acquiring a tag identifier from a tag fixed in, on, or proximal to a network device, using a computing device. The tag is configured to be read and written to by electronic communication with the computing device, when the computing device is disposed in proximity to the tag. The method further includes transmitting data indicative of the tag identifier to a server, and receiving an authorization confirmation from the server. The method also includes rewriting the tag so as to replace the tag identifier with a new tag identifier, using the computing device, and performing one or more operations with the network device after receiving the authorization.
Abstract:
Disclosed are systems and methods that provide authentication for printed and/or electronic versions of a document through the use of a document authentication device in the form of a computational tag configured for short-range wireless communication only. This document authentication device receives authentication information for a document from a computerized device over a wireless communication link and uses this authentication information to generate encoded data to be embedded in the document in order to establish the authenticity of the document by functioning as an imprimatur. Specifically, when embedded in the document, this encoded data can add a visible feature or non-visible feature that, upon inspection, establishes the authenticity of an electronic version of the document and/or can add a printable feature, which will be readable off a surface of a printed version of the document to establish the authenticity of that printed version.
Abstract:
The present invention generally relates to systems and methods for ensuring proximity between a first, e.g., mobile device, such as a smart phone, and a second, e.g., immobile device, such as a multi-function device. The invention can include the second device displaying a pattern that represents a series of movements, which a user of the first device can mimic. The first device can thus prove that it and its user are in proximity to the second device.
Abstract:
Methods and systems receive an electronic scanned image generated by activity of an application running on a portable computerized device, and calculate a cryptographic digest from data of the electronic scanned image using a second computerized device. Also, such methods and systems encrypt the cryptographic digest using an encryption key stored on the portable computerized device to create a content signature of the cryptographic digest, and send the content signature to the second computerized device. The authenticity of a copy of the electronic scanned image provided by the second computerized device is verified by recalculating the content signature (based on the copy of the electronic scanned image) using the encryption key from the portable device.
Abstract:
In implementations, a computer-implemented method for location assurance is disclosed. The method can include receiving, by an application executing on a mobile computing device, an electronic token from a server, wherein the electronic token comprises a timestamp signed using a cryptographic signing algorithm; providing, by the application, the electronic token to a passive computational tag, wherein the electronic token is countersigned by the passive computational tag; receiving, by the application, the electronic token that was countersigned by the passive computational tag; and providing, by the application, the electronic token that was countersigned to the server.
Abstract:
Methods and devices detect a near field communication (NFC) from a near field wireless communication device of an external computerized device, using an apparatus near field wireless communication device. Based on detecting the NFC, the methods/devices generate random identification and security codes, transmit the identification code and the security code from the apparatus near field wireless communication device to the device near field wireless communication device, and place the previously inactive apparatus wide-range wireless communication device in an active state. In response, the method receives the security code from a wide-range wireless communication device of the external computerized device using the apparatus wide-range wireless communication device. Then the method establishes a network communication session only between the external computerized device and the apparatus based on receiving the security code.