IMAGE CONCEALING VIA EFFICIENT FEATURE SELECTION
    1.
    发明申请
    IMAGE CONCEALING VIA EFFICIENT FEATURE SELECTION 有权
    通过有效的特征选择进行图像感知

    公开(公告)号:US20130177244A1

    公开(公告)日:2013-07-11

    申请号:US13346479

    申请日:2012-01-09

    Abstract: A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.

    Abstract translation: 公开了一种用于无监督特征选择的新技术。 所公开的方法包括自动选择图像的特征的子集。 另外,可以使用诸如基于最小二乘法的凝结算法的凝结算法来结合特征子集的选择。 通过选择图像的特征表示的子集,可以减少或去除冗余和/或不相关的特征,并且可以提高基于最小二乘法的凝结的效率和精度。

    Image concealing via efficient feature selection
    2.
    发明授权
    Image concealing via efficient feature selection 有权
    图像隐藏通过高效的特征选择

    公开(公告)号:US08774513B2

    公开(公告)日:2014-07-08

    申请号:US13346479

    申请日:2012-01-09

    Abstract: A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.

    Abstract translation: 公开了一种用于无监督特征选择的新技术。 所公开的方法包括自动选择图像的特征的子集。 另外,可以使用诸如基于最小二乘法的凝结算法的凝结算法来结合特征子集的选择。 通过选择图像的特征表示的子集,可以减少或去除冗余和/或不相关的特征,并且可以提高基于最小二乘法的凝结的效率和精度。

    Optimal gradient pursuit for image alignment
    3.
    发明授权
    Optimal gradient pursuit for image alignment 有权
    图像对齐的最佳梯度追踪

    公开(公告)号:US08478077B2

    公开(公告)日:2013-07-02

    申请号:US13052097

    申请日:2011-03-20

    CPC classification number: G06K9/3241 G06K9/00228

    Abstract: A method for image alignment is disclosed. In one embodiment, the method includes acquiring a facial image of a person and using a discriminative face alignment model to fit a generic facial mesh to the facial image to facilitate locating of facial features. The discriminative face alignment model may include a generative shape model component and a discriminative appearance model component. Further, the discriminative appearance model component may have been trained to estimate a score function that minimizes the angle between a gradient direction and a vector pointing toward a ground-truth shape parameter. Additional methods, systems, and articles of manufacture are also disclosed.

    Abstract translation: 公开了一种用于图像对准的方法。 在一个实施例中,该方法包括获取人的面部图像并使用区别性面部对准模型来将面部图像拟合为面部图像,以便于面部特征的定位。 鉴别面部对齐模型可以包括生成形状模型组件和鉴别外观模型组件。 此外,鉴别外观模型组件可能已经被训练以估计最小化梯度方向和指向地面真实形状参数的向量之间的角度的得分函数。 还公开了附加的方法,系统和制品。

    OPTIMAL SUBSPACES FOR FACE RECOGNITION
    4.
    发明申请
    OPTIMAL SUBSPACES FOR FACE RECOGNITION 有权
    面向认可的最佳选择

    公开(公告)号:US20110013845A1

    公开(公告)日:2011-01-20

    申请号:US12627039

    申请日:2009-11-30

    CPC classification number: G06K9/6234 G06K9/00288 G06K9/6215

    Abstract: A technique for optimizing object recognition is disclosed. The technique includes receiving at least one image of an object and at least one reference image. The technique further includes identifying at least one performance metric corresponding to an object recognition task. The identified performance metric is optimized to generate the corresponding optimized performance metric by determining an optimal subspace based on a determined objective function corresponding to the object recognition task and a difference between the received image and the corresponding reference image. Subsequently, the technique includes comparing the received image with the reference image based on the optimized performance metric for performing the object recognition task.

    Abstract translation: 公开了一种用于优化对象识别的技术。 该技术包括接收对象和至少一个参考图像的至少一个图像。 该技术还包括识别对应于对象识别任务的至少一个性能量度。 通过基于与对象识别任务相对应的确定的目标函数和接收到的图像与对应的参考图像之间的差异来确定最佳子空间来优化识别的性能度量以产生相应的优化性能度量。 随后,该技术包括基于用于执行对象识别任务的优化性能度量来比较接收到的图像与参考图像。

    SYSTEM AND METHOD FOR AUTOMATIC LANDMARK LABELING WITH MINIMAL SUPERVISION
    5.
    发明申请
    SYSTEM AND METHOD FOR AUTOMATIC LANDMARK LABELING WITH MINIMAL SUPERVISION 有权
    自动地标标签系统与方法与最小监控

    公开(公告)号:US20100246980A1

    公开(公告)日:2010-09-30

    申请号:US12533066

    申请日:2009-07-31

    Abstract: A system and method for estimating a set of landmarks for a large image ensemble employs only a small number of manually labeled images from the ensemble and avoids labor-intensive and error-prone object detection, tracking and alignment learning task limitations associated with manual image labeling techniques. A semi-supervised least squares congealing approach is employed to minimize an objective function defined on both labeled and unlabeled images. A shape model is learned on-line to constrain the landmark configuration. A partitioning strategy allows coarse-to-fine landmark estimation.

    Abstract translation: 用于估计大图像集合的一组地标的系统和方法仅使用来自集合的少量手动标记的图像,并且避免与手动图像标签相关联的劳动密集型和易出错的对象检测,跟踪和对准学习任务限制 技术 采用半监督的最小二乘法凝结方法来最小化在标记和未标记图像上定义的目标函数。 形状模型在线学习以约束地标配置。 分区策略允许粗略到精细的地标估计。

    Generic face alignment via boosting
    6.
    发明授权
    Generic face alignment via boosting 有权
    通过升压进行通用面对齐

    公开(公告)号:US08155399B2

    公开(公告)日:2012-04-10

    申请号:US12056051

    申请日:2008-03-26

    CPC classification number: G06K9/00241 G06K9/621

    Abstract: There is provided a discriminative framework for image alignment. Image alignment is generally the process of moving and deforming a template to minimize the distance between the template and an image. There are essentially three elements to image alignment, namely template representation, distance metric, and optimization method. For template representation, given a face dataset with ground truth landmarks, a boosting-based classifier is trained that is able to learn the decision boundary between two classes—the warped images from ground truth landmarks (e.g., positive class) and those from perturbed landmarks (e.g., negative class). A set of trained weak classifiers based on Haar-like rectangular features determines a boosted appearance model. A distance metric is a score from the strong classifier, and image alignment is the process of optimizing (e.g., maximizing) the classification score. On the generic face alignment problem, the proposed framework greatly improves the robustness, accuracy, and efficiency of alignment.

    Abstract translation: 提供了一种用于图像对齐的辨别框架。 图像对齐通常是移动和变形模板的过程,以最小化模板和图像之间的距离。 图像对齐基本上有三个要素,即模板表示,距离度量和优化方法。 对于模板表示,给定一个具有地面真实地标的面部数据集,训练有素的分类器能够学习两个类之间的决策边界 - 来自地面真实地标(例如,积极的类)和来自扰动地标的变形图像 (例如负面班)。 基于哈尔式矩形特征的一组经过训练的弱分类器决定了外观模型的提升。 距离度量是来自强分类器的分数,图像对准是优化(例如,最大化)分类分数的过程。 在通用面对齐问题上,提出的框架大大提高了对齐的鲁棒性,准确性和效率。

    Automatic surveillance video matting using a shape prior
    7.
    发明授权
    Automatic surveillance video matting using a shape prior 有权
    自动监控视频消光使用形状先前

    公开(公告)号:US09305357B2

    公开(公告)日:2016-04-05

    申请号:US13290928

    申请日:2011-11-07

    Abstract: A novel technique for performing video matting, which is built upon a proposed image matting algorithm that is fully automatic is disclosed. The disclosed methods utilize a PCA-based shape model as a prior for guiding the matting process, so that manual interactions required by most existing image matting methods are unnecessary. By applying the image matting algorithm to these foreground windows, on a per frame basis, a fully automated video matting process is attainable. The process of aligning the shape model with the object is simultaneously optimized based on a quadratic cost function.

    Abstract translation: 公开了一种用于执行视频消隐的新技术,其基于所提出的全自动图像消隐算法。 所公开的方法利用基于PCA的形状模型作为先前指导消光处理,使得大多数现有图像消光方法所需的手动交互是不必要的。 通过将图像消隐算法应用于这些前景窗口,在每帧的基础上,可以实现完全自动化的视频消隐处理。 基于二次成本函数,同时优化了形状模型与对象的对齐过程。

    Optimal subspaces for face recognition
    8.
    发明授权
    Optimal subspaces for face recognition 有权
    面部识别的最佳子空间

    公开(公告)号:US08498454B2

    公开(公告)日:2013-07-30

    申请号:US12627039

    申请日:2009-11-30

    CPC classification number: G06K9/6234 G06K9/00288 G06K9/6215

    Abstract: A technique for optimizing object recognition is disclosed. The technique includes receiving at least one image of an object and at least one reference image. The technique further includes identifying at least one performance metric corresponding to an object recognition task. The identified performance metric is optimized to generate the corresponding optimized performance metric by determining an optimal subspace based on a determined objective function corresponding to the object recognition task and a difference between the received image and the corresponding reference image. Subsequently, the technique includes comparing the received image with the reference image based on the optimized performance metric for performing the object recognition task.

    Abstract translation: 公开了一种用于优化对象识别的技术。 该技术包括接收对象和至少一个参考图像的至少一个图像。 该技术还包括识别对应于对象识别任务的至少一个性能量度。 通过基于与对象识别任务相对应的确定的目标函数和接收到的图像与对应的参考图像之间的差异来确定最佳子空间来优化识别的性能度量以产生相应的优化性能度量。 随后,该技术包括基于用于执行对象识别任务的优化性能度量来比较接收到的图像与参考图像。

    ANALYTICS-TO-CONTENT INTERFACE FOR INTERACTIVE ADVERTISING
    9.
    发明申请
    ANALYTICS-TO-CONTENT INTERFACE FOR INTERACTIVE ADVERTISING 审中-公开
    用于互动广告的分析 - 内容接口

    公开(公告)号:US20130138505A1

    公开(公告)日:2013-05-30

    申请号:US13308376

    申请日:2011-11-30

    CPC classification number: G06Q30/02

    Abstract: An advertising system is disclosed. In one embodiment, the system includes a processor and a memory including application instructions for execution by the processor. The application instructions may include a visual analytics engine to analyze visual information including human activity and a content engine separate from the visual analytics engine to provide advertising content to one or more potential customers. Further, the instructions may include an interface module to enable information generated from analysis of the human activity by the visual analytics engine to be transferred to the content engine in accordance with a specification in which the information generated is characterized with a hierarchical, object-oriented data structure. Additional methods, systems, and articles of manufacture are also disclosed.

    Abstract translation: 公开了广告系统。 在一个实施例中,该系统包括处理器和包括由处理器执行的应用指令的存储器。 应用指令可以包括视觉分析引擎,用于分析包括人类活动的视觉信息和与视觉分析引擎分离的内容引擎,以向一个或多个潜在客户提供广告内容。 此外,指令可以包括接口模块,用于根据其中所生成的信息以层次化,面向对象的特征来指示由视觉分析引擎分析人类活动而产生的信息被传送到内容引擎 数据结构。 还公开了附加的方法,系统和制品。

    EPISODIC APPROACHES FOR INTERACTIVE ADVERTISING
    10.
    发明申请
    EPISODIC APPROACHES FOR INTERACTIVE ADVERTISING 审中-公开
    互动广告的感知方法

    公开(公告)号:US20130138493A1

    公开(公告)日:2013-05-30

    申请号:US13308394

    申请日:2011-11-30

    CPC classification number: G06Q30/02

    Abstract: An advertising system is disclosed. In one embodiment, the system includes an advertising station configured to output advertising content to a potential customer and a data processing system including a processor and a memory having application instructions for execution by the processor. The application instructions may include an identification engine to identify the potential customer, a tracking engine to track encounters between the potential customer and the advertising station, and a content engine to select the advertising content to be output to the potential customer based on the tracked encounters between the potential customer and the advertising station. Additional methods, systems, and articles of manufacture are also disclosed.

    Abstract translation: 公开了广告系统。 在一个实施例中,系统包括被配置为向潜在客户输出广告内容的广告站和包括处理器的数据处理系统和具有由处理器执行的应用指令的存储器。 应用程序指令可以包括识别潜在客户的识别引擎,用于跟踪潜在客户和广告站之间的相遇的跟踪引擎,以及内容引擎,以基于被跟踪的遭遇来选择要向潜在客户输出的广告内容 潜在客户和广告站之间。 还公开了附加的方法,系统和制品。

Patent Agency Ranking