Abstract:
A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.
Abstract:
A novel technique for unsupervised feature selection is disclosed. The disclosed methods include automatically selecting a subset of a feature of an image. Additionally, the selection of the subset of features may be incorporated with a congealing algorithm, such as a least-square-based congealing algorithm. By selecting a subset of the feature representation of an image, redundant and/or irrelevant features may be reduced or removed, and the efficiency and accuracy of least-square-based congealing may be improved.
Abstract:
A method for image alignment is disclosed. In one embodiment, the method includes acquiring a facial image of a person and using a discriminative face alignment model to fit a generic facial mesh to the facial image to facilitate locating of facial features. The discriminative face alignment model may include a generative shape model component and a discriminative appearance model component. Further, the discriminative appearance model component may have been trained to estimate a score function that minimizes the angle between a gradient direction and a vector pointing toward a ground-truth shape parameter. Additional methods, systems, and articles of manufacture are also disclosed.
Abstract:
A technique for optimizing object recognition is disclosed. The technique includes receiving at least one image of an object and at least one reference image. The technique further includes identifying at least one performance metric corresponding to an object recognition task. The identified performance metric is optimized to generate the corresponding optimized performance metric by determining an optimal subspace based on a determined objective function corresponding to the object recognition task and a difference between the received image and the corresponding reference image. Subsequently, the technique includes comparing the received image with the reference image based on the optimized performance metric for performing the object recognition task.
Abstract:
A system and method for estimating a set of landmarks for a large image ensemble employs only a small number of manually labeled images from the ensemble and avoids labor-intensive and error-prone object detection, tracking and alignment learning task limitations associated with manual image labeling techniques. A semi-supervised least squares congealing approach is employed to minimize an objective function defined on both labeled and unlabeled images. A shape model is learned on-line to constrain the landmark configuration. A partitioning strategy allows coarse-to-fine landmark estimation.
Abstract:
There is provided a discriminative framework for image alignment. Image alignment is generally the process of moving and deforming a template to minimize the distance between the template and an image. There are essentially three elements to image alignment, namely template representation, distance metric, and optimization method. For template representation, given a face dataset with ground truth landmarks, a boosting-based classifier is trained that is able to learn the decision boundary between two classes—the warped images from ground truth landmarks (e.g., positive class) and those from perturbed landmarks (e.g., negative class). A set of trained weak classifiers based on Haar-like rectangular features determines a boosted appearance model. A distance metric is a score from the strong classifier, and image alignment is the process of optimizing (e.g., maximizing) the classification score. On the generic face alignment problem, the proposed framework greatly improves the robustness, accuracy, and efficiency of alignment.
Abstract:
A novel technique for performing video matting, which is built upon a proposed image matting algorithm that is fully automatic is disclosed. The disclosed methods utilize a PCA-based shape model as a prior for guiding the matting process, so that manual interactions required by most existing image matting methods are unnecessary. By applying the image matting algorithm to these foreground windows, on a per frame basis, a fully automated video matting process is attainable. The process of aligning the shape model with the object is simultaneously optimized based on a quadratic cost function.
Abstract:
A technique for optimizing object recognition is disclosed. The technique includes receiving at least one image of an object and at least one reference image. The technique further includes identifying at least one performance metric corresponding to an object recognition task. The identified performance metric is optimized to generate the corresponding optimized performance metric by determining an optimal subspace based on a determined objective function corresponding to the object recognition task and a difference between the received image and the corresponding reference image. Subsequently, the technique includes comparing the received image with the reference image based on the optimized performance metric for performing the object recognition task.
Abstract:
An advertising system is disclosed. In one embodiment, the system includes a processor and a memory including application instructions for execution by the processor. The application instructions may include a visual analytics engine to analyze visual information including human activity and a content engine separate from the visual analytics engine to provide advertising content to one or more potential customers. Further, the instructions may include an interface module to enable information generated from analysis of the human activity by the visual analytics engine to be transferred to the content engine in accordance with a specification in which the information generated is characterized with a hierarchical, object-oriented data structure. Additional methods, systems, and articles of manufacture are also disclosed.
Abstract:
An advertising system is disclosed. In one embodiment, the system includes an advertising station configured to output advertising content to a potential customer and a data processing system including a processor and a memory having application instructions for execution by the processor. The application instructions may include an identification engine to identify the potential customer, a tracking engine to track encounters between the potential customer and the advertising station, and a content engine to select the advertising content to be output to the potential customer based on the tracked encounters between the potential customer and the advertising station. Additional methods, systems, and articles of manufacture are also disclosed.