摘要:
In a network-based cache-coherent multiprocessor system, when a node receives a cache request, the node can perform an intra-node cache snoop operation and forward the cache request to a subsequent node in the network. A snoop-and-forward prediction mechanism can be used to predict whether lazy forwarding or eager forwarding is used in processing the incoming cache request. With lazy forwarding, the node cannot forward the cache request to the subsequent node until the corresponding intra-node cache snoop operation is completed. With eager forwarding, the node can forward the cache request to the subsequent node immediately, before the corresponding intra-node cache snoop operation is completed. Furthermore, the snoop-and-forward prediction mechanism can be enhanced seamlessly with an appropriate snoop filter to avoid unnecessary intra-node cache snoop operations.
摘要:
In a network-based cache-coherent multiprocessor system, when a node receives a cache request, the node can perform an intra-node cache snoop operation and forward the cache request to a subsequent node in the network. A snoop-and-forward prediction mechanism can be used to predict whether lazy forwarding or eager forwarding is used in processing the incoming cache request. With lazy forwarding, the node cannot forward the cache request to the subsequent node until the corresponding intra-node cache snoop operation is completed. With eager forwarding, the node can forward the cache request to the subsequent node immediately, before the corresponding intra-node cache snoop operation is completed. Furthermore, the snoop-and-forward prediction mechanism can be enhanced seamlessly with an appropriate snoop filter to avoid unnecessary intra-node cache snoop operations.
摘要:
In a network-based cache-coherent multiprocessor system, when a node receives a cache request, the node can perform an intra-node cache snoop operation and forward the cache request to a subsequent node in the network. A snoop-and-forward prediction mechanism can be used to predict whether lazy forwarding or eager forwarding is used in processing the incoming cache request. With lazy forwarding, the node cannot forward the cache request to the subsequent node until the corresponding intra-node cache snoop operation is completed. With eager forwarding, the node can forward the cache request to the subsequent node immediately, before the corresponding intra-node cache snoop operation is completed. Furthermore, the snoop-and-forward prediction mechanism can be enhanced seamlessly with an appropriate snoop filter to avoid unnecessary intra-node cache snoop operations.
摘要:
A computer readable medium is provided embodying instructions executable by a processor to performing a method for performing a transaction including a transaction head and a transaction tail, the method includes executing die transaction head, including executing at least one memory reserve instruction to reserve a transactional memory location that are accessed in the transaction and executing the transaction tail, wherein the transaction cannot be aborted due to a data race on that transactional memory location while executing the transaction tail, wherein data of memory write operations to the transactional memory location is committed without being buffered.
摘要:
A computer-implemented method for enforcing cache coherence includes multicasting a cache request for a memory address from a requesting node without an ordering restriction over a network, collecting, by the requesting node, a combined snoop response of the cache request over a unidirectional ring embedded in the network, and enforcing cache coherence for the memory address at the requesting node, according to the combined snoop response.
摘要:
A method for performing a transaction including a transaction head and a transaction tail, includes executing the transaction head, including executing at least one memory reserve instruction to reserve a transactional memory location that are accessed in the transaction and executing the transaction tail, wherein the transaction cannot be aborted due to a data race on that transactional memory location while executing the transaction tail, wherein data of memory write operations to the transactional memory location is committed without being buffered.
摘要:
A computer readable medium is provided embodying instructions executable by a processor to perform a method for performing a transaction including a transaction head and a transaction tail, the method includes executing the transaction head, including executing at least one memory reserve instruction to reserve a transactional memory location that are accessed in the transaction and executing the transaction tail, wherein the transaction cannot be aborted due to a data race on that transactional memory location while executing the transaction tail, wherein data of memory write operations to the transactional memory location is committed without being buffered.
摘要:
A method for performing a transaction including a transaction head and a transaction tail, includes executing the transaction head, including executing at least one memory reserve instruction to reserve a transactional memory location that are accessed in the transaction and executing the transaction tail, wherein the transaction cannot be aborted due to a data race on that transactional memory location while executing the transaction tail, wherein data of memory write operations to the transactional memory location is committed without being buffered.
摘要:
A computer-implemented method for enforcing cache coherence includes multicasting a cache request for a memory address from a requesting node without an ordering restriction over a network, collecting, by the requesting node, a combined snoop response of the cache request over a unidirectional ring embedded in the network, and enforcing cache coherence for the memory address at the requesting node, according to the combined snoop response.
摘要:
In a network-based cache-coherent multiprocessor system, when a node receives a cache request, the node can perform an intra-node cache snoop operation and forward the cache request to a subsequent node in the network. A snoop-and-forward prediction mechanism can be used to predict whether lazy forwarding or eager forwarding is used in processing the incoming cache request. With lazy forwarding, the node cannot forward the cache request to the subsequent node until the corresponding intra-node cache snoop operation is completed. With eager forwarding, the node can forward the cache request to the subsequent node immediately, before the corresponding intra-node cache snoop operation is completed. Furthermore, the snoop-and-forward prediction mechanism can be enhanced seamlessly with an appropriate snoop filter to avoid unnecessary intra-node cache snoop operations.