摘要:
Overlay network peers may be grouped so that each peer in a peer group has a similar transport network proximity measure with respect to the peers in other peer groups. A first set of transport network distances may include distances between a peer group and peer group neighbors of the peer group. A second set of distances may include distances between a peer and the peer group neighbors of the peer group. The peer may decide to join the peer group if the first set of distances is near to the second set. A first peer group may query a second peer group for the second peer group's neighboring peer groups. The distance between the first peer group and each of the second peer group's neighbors may be measured. Overlay network connections may be established between the first peer group and the closest of the second peer group's neighbors.
摘要:
Overlay network peers may be grouped so that each peer in a peer group has a similar transport network proximity measure with respect to the peers in other peer groups. A first set of transport network distances may include distances between a peer group and peer group neighbors of the peer group. A second set of distances may include distances between a peer and the peer group neighbors of the peer group. The peer may decide to join the peer group if the first set of distances is near to the second set. A first peer group may query a second peer group for the second peer group's neighboring peer groups. The distance between the first peer group and each of the second peer group's neighbors may be measured. Overlay network connections may be established between the first peer group and the closest of the second peer group's neighbors.
摘要:
A peer-to-peer (P2P) probing/network quality of service (QoS) analysis system utilizes a UDP-based probing tool for determining latency, bandwidth, and packet loss ratio between peers in a network. The probing tool enables network QoS probing between peers that connect through a network address translator. The list of peers to probe is provided by a connection server based on prior probe results and an estimate of the network condition. The list includes those peers which are predicted to have the best QoS with the requesting peer. Once the list is obtained, the requesting peer probes the actual QoS to each peer on the list, and returns these results to the connection server. P2P probing in parallel using a modified packet-pair scheme is utilized. If anomalous results are obtained, a hop-by-hop probing scheme is utilized to determine the QoS of each link. In such a scheme, differential destination measurement is utilized.
摘要:
The routing traffic in wireless networks is performed in accordance with a routing metric. The routing metric can reflect the effects of future self-traffic of a forthcoming communication flow. In a described implementation, a routing decision is made for a forthcoming communication flow that is to propagate over multiple nodes of a multi-hop wireless network. The routing decision is based on at least one predicted effect on the wireless network from self-traffic of the forthcoming communication flow.
摘要:
The routing of traffic in wireless networks is performed in accordance with a routing metric. The routing metric can reflect the effects of future self-traffic of a forthcoming communication flow. In a described implementation, a routing decision is made for a forthcoming communication flow that is to propagate over multiple nodes of a multi-hop wireless network. The routing decision is based on at least one predicted effect on the wireless network from self-traffic of the forthcoming communication flow.
摘要:
Hybrid tree/mesh overlays for data delivery involve using a tree overlay network and a mesh overlay network to delivery a data stream via a push mechanism and a pull mechanism, respectively. In an example embodiment, a network node enters a mesh overlay network and attaches to a tree overlay network. In operation, the network node receives data blocks of a data stream over the tree overlay network via a push mechanism. The network node ascertains if a data block is not received over the tree overlay network. If a data block is missing, the network node retrieves the missing data block over the mesh overlay network via a pull mechanism. In another example embodiment, the tree overlay network includes a subset of nodes forming a tree-based backbone. Network nodes that are identified as being stable may join the backbone and provide the data stream to other nodes.
摘要:
This application describes routing packets from a source server to a plurality of ports of a switch. The switch is programmed by the control server and is used to direct incoming data packets to one or more ports of the switch in a manner that reduces congestion of incoming data packets to a destination server. Further, the control server queries congestion information from the switch, and then sends congestion notification back to the source server to either increase or decrease the amount of data being sent to the destination server.
摘要:
A dual mode communication device utilizes a control channel to exploit diversity, history, and context in advance of establishing a broadband data exchange session on a broadband but shorter range wireless data channel, maximizing productive use of such a session. Appropriate diversity for the negotiated session further enhance data transfer, including path diversity, radio technology diversity (e.g., WiMax, Wi-Fi, ultra wideband, Bluetooth), antenna diversity (e.g., MIMO), modulation diversity (e.g., rate selection for 802.11, or symbol length selection to combat multi-path fading), and frequency diversity (e.g., 2.4 GHz versus 5 GHz). Historical information about channel characteristics optimize the selection of channel parameters with respect to the diversity choices. In addition, context information such as location and speed can be used to categorize the historical information that is collected to further optimize channel parameters.
摘要:
An HTTP-based P2P framework is described. In one implementation, an exemplary system reduces network congestion caused by P2P traffic at Internet Service Providers (ISPs) by packetizing P2P data and recruiting pre-existing Internet web caches (for HTTP traffic) to cache the P2P traffic. Exemplary pinging techniques detect the web caches, which are usually transparent, and determine their usability. Then, an exemplary topology-building protocol constructs a cache-aware tree-structured P2P overlay that prefers to deliver the P2P traffic via cached data paths. The cache-aware tree-structured P2P overlay has a logical structure that maximizes P2P data transit over paths that have pre-existing Internet web caches. If no web caches are detected, then peers are put into an orphan set and can resort to conventional P2P technology.
摘要:
This application describes routing packets from a source server to a plurality of ports of a switch. The switch is programmed by the control server and is used to direct incoming data packets to one or more ports of the switch in a manner that reduces congestion of incoming data packets to a destination server. Further, the control server queries congestion information from the switch, and then sends congestion notification back to the source server to either increase or decrease the amount of data being sent to the destination server.